
SafeNet ProtectToolkit-J 5.9
REFERENCE GUIDE

Document Information

Product Version 5.9

Document Part Number 007-013682-007

Release Date 08 January 2020

Revision History

Revision Date Reason

Rev. A 08 January 2020 Initial release

Trademarks, Copyrights, and Third-Party Software
Copyright 2009-2020 Thales. All rights reserved. Thales and the Thales logo are trademarks and service
marks of Thales and/or its subsidiaries and are registered in certain countries. All other trademarks and service
marks, whether registered or not in specific countries, are the property of their respective owners.

Disclaimer
All information herein is either public information or is the property of and owned solely by Thales and/or its
subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual
property protection in connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise,
under any intellectual and/or industrial property rights of or concerning any of Thales’s information.

This document can be used for informational, non-commercial, internal, and personal use only provided that:

> The copyright notice, the confidentiality and proprietary legend and this full warning notice appear in all
copies.

> This document shall not be posted on any publicly accessible network computer or broadcast in any media,
and no modification of any part of this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS” without any warranty of any kind. Unless
otherwise expressly agreed in writing, Thales makes no warranty as to the value or accuracy of information
contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to
the information herein. Furthermore, Thales reserves the right to make any change or improvement in the
specifications data, information, and the like described herein, at any time.

Thales hereby disclaims all warranties and conditions with regard to the information contained herein,
including all implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In
no event shall Thales be liable, whether in contract, tort or otherwise, for any indirect, special or consequential

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 2

damages or any damages whatsoever including but not limited to damages resulting from loss of use, data,
profits, revenues, or customers, arising out of or in connection with the use or performance of information
contained in this document.

Thales does not and shall not warrant that this product will be resistant to all possible attacks and shall not
incur, and disclaims, any liability in this respect. Even if each product is compliant with current security
standards in force on the date of their design, security mechanisms' resistance necessarily evolves according
to the state of the art in security and notably under the emergence of new attacks. Under no circumstances,
shall Thales be held liable for any third party actions and in particular in case of any successful attack against
systems or equipment incorporating Thales products. Thales disclaims any liability with respect to security for
direct, indirect, incidental or consequential damages that result from any use of its products. It is further
stressed that independent testing and verification by the person using the product is particularly encouraged,
especially in any application in which defective, incorrect or insecure functioning could result in damage to
persons or property, denial of service, or loss of privacy.

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the
copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or
otherwise without the prior written permission of Thales.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 3

CONTENTS

Preface: About the SafeNet ProtectToolkit-J Reference Guide 7
Gemalto Rebranding 7
Audience 8
Document Conventions 8
Support Contacts 10

Chapter 1: Product Overview 11
Working With Slots 12
Resource Management 12
System Requirements 13
The Software 15
Installation 16
Windows Installation 17
Unix Installation Utility 18
Unix Manual Installation 22
Linux Installation 22
Solaris Installation 23
IBM AIX Installation 24
HP-UX Installation 24

Chapter 2: Troubleshooting 26

Chapter 3: JCA/JCE API Overview 27
Encryption/Decryption 27
The Cipher Class 27
Cipher Input and Output Streams 28
SealedObject 29
Algorithm Parameters 30

Message Digests 31
Message Authentication Code (MAC) 31
Authentication 32
Digital Signatures 32
Object Signing 34

Key Management 35
Generating Random Keys 35
Key Conversion 36
Key Agreement Protocols 38
Key Storage 38
Certificates 40

Error Handling and Exceptions 40

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 4

Chapter 4: Supported Ciphers 42
Cipher Algorithm Parameters 43
DES 44
DESede 47
AES 50
IDEA 52
CAST128 54
RC2 56
RC4 59
PBECiphers 61
RSA 63

Chapter 5: Supported Signature Algorithms 66
MD2withRSA 66
MD5withRSA 67
SHA1withRSA 67
SHA224withRSA 67
SHA256withRSA 67
SHA384withRSA 68
SHA512withRSA 68
SHA1withDSA 68
DSAKey 68
PKCS#1RSA 70
X.509RSA 70
DSARaw 70
RIPEMD160withRSA 70
RIPEMD128withRSA 70

Chapter 6: Supported MAC Algorithms 71
DESMAC 71
DESede MAC 71
DESedeX919 MAC 71
IDEAMAC 72
CAST128 MAC 72
RC2 72
HMAC/MD2 72
HMAC/MD5 72
HMAC/SHA1 72
HMAC/SHA224 73
HMAC/SHA256 73
HMAC/SHA384 73
HMAC/SHA512 73
Sample MACCode 73

Chapter 7: Supported Message Digest Algorithms 75
MD2 75
MD5 75

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 5

SHA-1 76
SHA-224 76
SHA-256 76
SHA-384 76
SHA-512 76
RIPEMD160 77
RIPEMD128 77

Chapter 8: Key Generation 78
Secret Keys 78
Public Keys 79

Chapter 9: Key Management 82
Key Storage 82
KeyWrapping 83
Key Specifications 84

Chapter 10: Best Practice Guidelines 86
SafeNet ProtectToolkit-J Provider 86
Key Protection 86
General SafeNet ProtectToolkit-J Usage Guidelines 86

Appendix A: JCA/JCE API Tutorial 88
Public Key Cryptography 88
FileCrypt Application 88
File Encryption 89
File Decryption 93
Accessing Public Keys 98
Main() 98

Appendix B: Random Number Generation 101

Appendix C: References 102

Glossary 103

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 6

PREFACE: About the SafeNet
ProtectToolkit-J Reference Guide

This document provides reference material for Java software developers using SafeNet ProtectToolkit-J. It
contains the following chapters:

> "Product Overview" on page 11

> "Installation" on page 16

> "JCA/JCE API Overview" on page 27

> "Supported Ciphers" on page 42

> "Supported Signature Algorithms" on page 66

> "SupportedMAC Algorithms" on page 71

> "SupportedMessage Digest Algorithms" on page 75

> "KeyGeneration" on page 78

> "KeyManagement" on page 82

> "Best Practice Guidelines" on page 86

> "JCA/JCE API Tutorial" on page 88

> "RandomNumber Generation" on page 101

> "References" on page 102
This preface also includes the following information about this document:

> "Gemalto Rebranding" below

> "Audience" on the next page

> "Document Conventions" on the next page

> "Support Contacts" on page 10

For information regarding the document status and revision history, see "Document Information" on page 2.

Gemalto Rebranding
In early 2015, Gemalto completed its acquisition of SafeNet, Inc. As part of the process of rationalizing the
product portfolios between the two organizations, the SafeNet name has been retained. As a result, the
product names for SafeNet HSMs have changed as follows:

Old product name New product name

ProtectServer External 2 (PSE2) SafeNet ProtectServer Network HSM

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 7

Preface: About the SafeNet ProtectToolkit-J Reference Guide

Old product name New product name

ProtectServer Internal Express 2 (PSI-E2) SafeNet ProtectServer PCIe HSM

ProtectServer HSM Access Provider SafeNet ProtectServer HSM Access Provider

ProtectToolkit C (PTK-C) SafeNet ProtectToolkit-C

ProtectToolkit J (PTK-J) SafeNet ProtectToolkit-J

ProtectToolkit M (PTK-M) SafeNet ProtectToolkit-M

ProtectToolkit FM SDK SafeNet ProtectToolkit FM SDK

NOTE These branding changes apply to the documentation only. The SafeNet HSM
software and utilities continue to use the old names.

Audience
This document is intended for personnel responsible for maintaining your organization's security
infrastructure. This includes SafeNet ProtectToolkit users and security officers, key manager administrators,
and network administrators.

All products manufactured and distributed by Thales are designed to be installed, operated, and maintained by
personnel who have the knowledge, training, and qualifications required to safely perform the tasks assigned
to them. The information, processes, and procedures contained in this document are intended for use by
trained and qualified personnel only.

It is assumed that the users of this document are proficient with security concepts.

Document Conventions
This document uses standard conventions for describing the user interface and for alerting you to important
information.

Notes
Notes are used to alert you to important or helpful information. They use the following format:

NOTE Take note. Contains important or helpful information.

Cautions
Cautions are used to alert you to important information that may help prevent unexpected results or data loss.
They use the following format:

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 8

Preface: About the SafeNet ProtectToolkit-J Reference Guide

CAUTION! Exercise caution. Contains important information that may help prevent
unexpected results or data loss.

Warnings
Warnings are used to alert you to the potential for catastrophic data loss or personal injury. They use the
following format:

WARNING Be extremely careful and obey all safety and security measures. In
this situation you might do something that could result in catastrophic data loss or
personal injury.

Command Syntax and Typeface Conventions

Format Convention

bold The bold attribute is used to indicate the following:
> Command-line commands and options (Type dir /p.)
> Button names (Click Save As.)
> Check box and radio button names (Select thePrint Duplex check box.)
> Dialog box titles (On theProtect Document dialog box, click Yes.)
> Field names (User Name:Enter the name of the user.)
> Menu names (On the Filemenu, click Save.) (Click Menu > Go To > Folders.)
> User input (In theDate box, typeApril 1.)

italics In type, the italic attribute is used for emphasis or to indicate a related document. (See the
Installation Guide for more information.)

<variable> In command descriptions, angle brackets represent variables. Youmust substitute a value for
command line arguments that are enclosed in angle brackets.

[optional]
[<optional>]

Represent optional keywords or <variables> in a command line description. Optionally enter the
keyword or <variable> that is enclosed in square brackets, if it is necessary or desirable to
complete the task.

{a|b|c}
{<a>||<c>}

Represent required alternate keywords or <variables> in a command line description. Youmust
choose one command line argument enclosed within the braces. Choices are separated by vertical
(OR) bars.

[a|b|c]
[<a>||<c>]

Represent optional alternate keywords or variables in a command line description. Choose one
command line argument enclosed within the braces, if desired. Choices are separated by vertical
(OR) bars.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 9

Preface: About the SafeNet ProtectToolkit-J Reference Guide

Support Contacts
If you encounter a problem while installing, registering, or operating this product, please refer to the
documentation before contacting support. If you cannot resolve the issue, contact your supplier or Thales
Customer Support.

Thales Customer Support operates 24 hours a day, 7 days a week. Your level of access to this service is
governed by the support plan arrangements made between Thales and your organization. Please consult this
support plan for further information about your entitlements, including the hours when telephone support is
available to you.

Customer Support Portal
The Customer Support Portal, at https://supportportal.thalesgroup.com, is where you can find solutions for
most common problems. The Customer Support Portal is a comprehensive, fully searchable database of
support resources, including software and firmware downloads, release notes listing known problems and
workarounds, a knowledge base, FAQs, product documentation, technical notes, and more. You can also use
the portal to create and manage support cases.

NOTE You require an account to access the Customer Support Portal. To create a new
account, go to the portal and click on the REGISTER link.

Telephone
The support portal also lists telephone numbers for voice contact (Contact Us).

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 10

https://supportportal.thalesgroup.com/csm
https://supportportal.thalesgroup.com/csm
https://supportportal.thalesgroup.com/
https://supportportal.thalesgroup.com/csm?id=kb_article_view&sys_kb_id=42fb71b4db1be200fe0aff3dbf96199f&sysparm_article=KB0013367

CHAPTER 1: Product Overview

SafeNet ProtectToolkit-J is a Cryptographic Service Provider for the Java Cryptographic Architecture (JCA) /
Java Cryptographic Extension (JCE) interface. SafeNet ProtectToolkit-J implements a number of
cryptographic algorithms that are supported by SafeNet’s hardware encryption devices. These devices
support encryption, signature generation and verification, message digests, key storage and message
authentication. SafeNet ProtectToolkit-J also includes a clean-room implementation of the JCA/JCE
framework, allowing for immediate use with Java 6.x, 7.x, and 8.x.

This document assumes some knowledge of the Java programming language, the JCA/JCE application
programming interfaces, and some understanding of the underlying adapter interface, which is based on
PKCS#11 (Cryptoki). Refer to the SafeNet ProtectToolkit-C AdministrationManual for more information on
Cryptoki. For general information on the JCA/JCE, consult:

> "JCA/JCE API Overview" on page 27

> "JCA/JCE API Tutorial" on page 88

> JCA reference material found at http://docs.oracle.com/

This document does not discuss the security properties of the various algorithms in general; please consult the
standard cryptography texts for this information.

SafeNet ProtectToolkit-J is known to the JCA/JCE by the provider name SAFENET. To request an algorithm
implemented by this provider, the string "SAFENET" should be passed to the getInstance()method.

SafeNet ProtectToolkit-J is SafeNet’s Java Cryptographic Architecture (JCA) / Java Cryptographic Extension
(JCE) provider. It allows Cryptographic processing using the Java development language. It requires that SafeNet
ProtectToolkit-C Runtime and an appropriate Access Provider are installed.

TheSafeNet ProtectToolkit-C Runtime package is
needed to perform Cryptoki (PKCS#11) processing.
The SafeNet ProtectToolkit-C Hardware Runtime
needs an Access Provider. There are two Access
Provider install packages in order to operate the
Runtime in a local PCIe bus or network attached
remote server arrangement.

TheSafeNet ProtectToolkit-C Software Development Kit
(SDK) is provided to develop applications using PKCS#11
processing. Refer to theSafeNet ProtectToolkit-C
Administration Guide for instructions on how to install this
SDK. The SafeNet ProtectToolkit-C SDK includes the
SafeNet ProtectToolkit-C Runtime as well as a Software
Emulation that does not require any Access Providers.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 11

http://docs.oracle.com/

Chapter 1: Product Overview

Hardware
The hardware version of
SafeNet ProtectToolkit-C
requires a SafeNet
ProtectServer HSM. Refer to
the InstallationManuals for
instructions on how to install
the adapter and theSafeNet
ProtectToolkit-C
Administration Guide for how to
install the Runtime or SDK
package.

Software
The software-only version of SafeNet
ProtectToolkit-C requires a compatible
PC, and would primarily be used in a
development or testing environment. Refer
to theSafeNet ProtectToolkit-C
Administration Guide for instructions on
how to install the software-only version of
the SDK package.

Remote Client/Server
This version of SafeNet
ProtectToolkit-C requires a TCP/IP
network with one or more
workstations and a server. SafeNet
ProtectToolkit-C processing is
performed by the server at the request
of the client. The server must be
running the Runtime package or the
hardware version of the SDK
package.

WorkingWith Slots
SafeNet ProtectToolkit-J is capable of interfacing to multiple adapters. This is achieved by using different
“virtual providers” which map to each adapter. The virtual providers are named SAFENET.n, where n is the
slot number as configured with the SafeNet ProtectToolkit-C runtime tools. The special provider SAFENET
always maps to the first slot.

A provider class exists (SAFENETProvider) for each of the slots in the package
au.com.safenet.crypto.provider.slot<n>. These providers may be statically installed. Alternatively, they
may be added dynamically by calling the SAFENETProvider.addProviders()method.

ResourceManagement
Resource management is an important consideration when using the SafeNet provider. In general, creation of
a provider instance (a Cipher object or Key object, for example) consumes resources within the adapter. This
consumption is less than that of the main JVM and so the garbage collection is not tuned to its needs. The
application programmer must therefore manage collection.

Two main techniques may be employed:

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 12

Chapter 1: Product Overview

> Explicitly track resource usage, invoking garbage collector on certain thresholds. For example, after the
creation of 100 “session” Key objects, which are only required for a short transaction and then discarded, it
may be necessary to run the garbage collector to clean up those unused instances.

> The second technique requires some tuning of the Cryptoki configuration on the adapter. If SafeNet
ProtectToolkit-J cannot create a new “session” with the adapter it invokes the garbage collection (in the
hope that there are some old unused sessions awaiting cleanup). By reducing the maximum number of
sessions allowed by the adapter, the adapter may be tuned to the application's requirements so that explicit
resource management is not required.

System Requirements
> ASafeNet cryptographic services adapter (not required for operation in software-only mode).

> The PC on which you plan to run SafeNet ProtectToolkit-J must already have SafeNet ProtectToolkit-C
Runtime installed. For system requirements, see the SafeNet ProtectToolkit-C Administration Guide.

> Java Runtime (for SafeNet ProtectToolkit-J Runtime) or JDK (for SafeNet ProtectToolkit-J SDK). The
product has been tested using Java Runtime versions 6.x, 7.x, and 8.x. It may also operate correctly using
other versions of the runtime, but this is not supported by Thales.

NOTE Java runtime or JDKmust be installed before installing SafeNet ProtectToolkit-J.

The supported platforms are listed in the following table.

C=SafeNet ProtectToolkit-C, PKCS #11 v2.10/2.20

M=SafeNet ProtectToolkit-M, MSCSP 2.0 with CNG

J=SafeNet ProtectToolkit-J, Java runtime 6.x/7.x/8.x

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 13

Chapter 1: Product Overview

Operating System OS
type

64-bit
PTK

64-bit PTK supported
hardware

32-bit
PTK

32-bit PTK supported
hardware

Windows 10 64-
bit

C/M/J PCIe HSM
Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

Server 2016 64-
bit

C/M/J PCIe HSM
Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

Server 2012 R2 64-
bit

C/M/J PCIe HSM
Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

Server 2008
(R1 and R2)

64-
bit

C/M/J PCIe HSM
Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

7 32-
bit

- - C/J
(KSP
support)

PCIe HSM
Network HSM
Network HSM Plus

7 64-
bit

C/M/J PCIe HSM
Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

Linux RHEL 7 64-
bit

C/J PCIe HSM
Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

RHEL 6 32-
bit

- - C/J PCIe HSM
Network HSM
Network HSM Plus

RHEL 6 64-
bit

C/J PCIe HSM
Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

SUSE12 64-
bit

C/J PCIe HSM
Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 14

Chapter 1: Product Overview

Operating System OS
type

64-bit
PTK

64-bit PTK supported
hardware

32-bit
PTK

32-bit PTK supported
hardware

AIX 7.2 64-
bit

C/J Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

7.1 64-
bit

C/J Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

6.1 64-
bit

C/J Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

Solaris 11 (SPARC,
x86)
10 (SPARC,
x86)

64-
bit

C/J Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

HP-UX 11 64-
bit

C/J Network HSM
Network HSM Plus

C/J Network HSM
Network HSM Plus

The Software
The latest versions of the client software and HSM firmware can be found on the Thales Technical Support
Customer Portal. See "Support Contacts" on page 10 for more information. The following SafeNet
ProtectToolkit-J packages can be found in the installation package:

Package Windows UNIX

SafeNet ProtectToolkit-J Runtime PTKjprt.msi PTKjprov

SafeNet ProtectToolkit-J SDK PTKjpsdk.msi PTKjpsdk

The SafeNet ProtectToolkit-J Runtime includes the necessary shared libraries required to interface to the
SafeNet ProtectToolkit-C Runtime, as well as the Java class libraries that implement the JCE specification and
the SafeNet ProtectToolkit-J provider. For instructions on SafeNet ProtectToolkit-C Runtime installation,
please refer to the SafeNet ProtectToolkit-C Administration Guide.

The SafeNet ProtectToolkit-J SDK is provided as a software development platform.

NOTE If you will be using larger key sizes or non-FIPS algorithms, install the JCEUnlimited
Strength Jurisdiction Policy Files patch. They are available for download on the Oracle
website (http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-
432124.html).

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 15

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

Installation
This chapter is intended for the administrator wqho will install SafeNet ProtectToolkit-J on host computer
systems. It deals explicitly with issues and concepts involved during the SafeNet ProtectToolkit-J software
installation and uninstallation.This chapter also provides instructions for installing the SafeNet ProtectToolkit-J
SDK and Runtime packages. It contains the following sections:

> "Windows Installation" on the next page

> "Unix Installation Utility" on page 18

> "UnixManual Installation" on page 22

> "Troubleshooting" on page 26
For hardware installation instructions, refer to:

> SafeNet ProtectServer PCIe HSM Installation Guide

> SafeNet ProtectServer Network HSM Installation/Configuration Guide

> SafeNet HSM Access Provider Installation Guide

The Provider may be statically installed into the Java Runtime Environment by adding an entry, similar to the
following, into the java.security properties file located in $JAVA_HOME/lib/security/java.security
security.provider.2 = au.com.safenet.crypto.provider.SAFENETProvider
Alternatively, the Provider may be installed dynamically by an application at runtime by using the
java.security.Security.addProvider()method. For example:
Security.addProvider(new au.com.safenet.crypto.provider.SAFENETProvider());
If the Provider is to be used on a specific Slot, the format for the above references should be:

au.com.safenet.crypto.provider.slot <n>.SAFENETProvider

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 16

Windows Installation
Before continuing with the SafeNet ProtectToolkit-J installation, ensure that you have installed SafeNet
ProtectToolkit-C Runtime. For details, please refer to the SafeNet ProtectToolkit-C Administration Guide.

The SafeNet ProtectToolkit-J Runtime package must be installed before the SafeNet ProtectToolkit-J Software
Development Kit (SDK).

NOTE To add or remove software, you must have Administrator privileges.

The installation also allows the SafeNet ProtectToolkit-J directory to be automatically added to the system’s
execution path. This will make the newly-installed programs and libraries available from the command prompt.

Installation File Details

PTKjprt.msi SafeNet ProtectToolkit-J Runtime Package

PTKjpsdk.msi SafeNet ProtectToolkit-J SDK Package

To install the package, execute the PTKjprt.msi program. This will start the installation wizard. Follow the on-
screen instructions to install the software. If you wish to install the SDK, repeat the process with the
PTKjpsdk.msi program.
The installation program will create a new program group named Safenet\ProtectToolkit J\Runtime and
add it to your Startmenu. Program files are saved to C:\Program Files\SafeNet\Protect Toolkit 5.

Windows Uninstallation
To uninstall the SafeNet ProtectToolkit-J Runtime, open yourWindows Control Panel and double-click on
the Add/Remove Program icon. Locate the entry for the SafeNet ProtectToolkit-J installation and click on the
remove button.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 17

Unix Installation Utility
Before continuing with the SafeNet ProtectToolkit-J installation, ensure that you have installed SafeNet
ProtectToolkit-C Runtime. For details, please refer to the SafeNet ProtectToolkit-C Administration Guide.

The SafeNet ProtectToolkit-J Runtime package must be installed before the SafeNet ProtectToolkit-J Software
Development Kit (SDK).

NOTE To add or remove software, you must first become the super-user on the host
system.

Installation and uninstallation commands are different for each of the supported Unix platforms. To account for
these differences, the package should be installed using the Unix Installation Utility. Manual commands
specific to your operating system can be used, but this is not the recommended method. The Installation Utility
is more likely to result in a problem-free installation or uninstallation. The latest versions of the client software
and HSM firmware can be found on the Thales Technical Support Customer Portal. See "Support Contacts" on
page 10 for more information.
The utility provides a simple menu-driven interface. In addition to installing and uninstalling the access provider
on Unix systems, it can also:

> List already-installed SafeNet packages

> List directory contents, for the current platform or all platforms

> Install a package from the directory (which also installs the utility in /usr/bin)
> Change the default operating mode (hardware or software-only).

Whenever the utility installs a SafeNet package, it also installs itself on the host system's hard disk (in
/usr/bin/safeNet-install.sh). This copy can be used to uninstall or configure the software.

Utility Startup
Should you encounter any problems while following this procedure, please see "Unix Installation Utility
troubleshooting" on page 20. Options can be specified when executing the safeNet-install.sh command.
These options are not normally required and are mainly useful for troubleshooting.

Syntax
safeNet-install.sh [-h] [-p] [-s <size>] [-v]

Option Description

-h Show help.

-p Plain mode. In this mode the ‘tput’ is not used for video enhancements.

-s<size> Override the screen size (default = ‘tput lines/cols’ or 24x80).

-v Print the version of this script.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 18

If you wish to enter platform-specific commands manually, use the commands given in "UnixManual
Installation" on page 22.

To start up the utility

1. The Thales Unix Installation Utility is located in the installation DVD or image's root directory. Mount the
DVD or unzip the image by following standard procedure for your platform and installation.

2. Change directory to the DVD or directory and start the utility. For example:
cd /misc/cd
./safeNet-install.sh

The utility scans the system and the directory and displays the Main Menu.
Gemalto Unix Installation Utility (version 5.3.0):
Hostname: 66 (Linux 2.6.32-504.16.2.el6.i686)
Main menu

1 list Gemalto packages already installed
2 list packages on CD
3 install a package from this CD
4 uninstall a Gemalto package
5 Set the default cryptoki and/or hsm link

q quit the utility

Choice (1 2 3 4 q) [Redraw]:

NOTE Enter 'b' to go back to the previous menu and 'q' to quit the utility. You can also quit
with the system INTR key (normally ^C).

Installing a package
Should you encounter any problems, please see "Unix Installation Utility troubleshooting" on the next page.

To install a package

1. Select install a package from this CD from the utility's Main Menu.

A list of installable SafeNet packages is displayed.

2. Select the package required by typing the appropriate menu number followed by Enter.
The utility verifies the action and executes the appropriate command for your platform.

3. On some platforms, you may be prompted for additional installation options. On Linux, for example, you can
add a –nodeps option to suppress the checking of dependencies. These options should be selected with
appropriate care.

4. You may now need to respond to any platform-specific messages (for example: to confirm you wish to
proceed with the installation).

5. After installation, the utility will return Success or Failure, scan the system again, and display the current
installation status. Press the Enter key to continue.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 19

Uninstalling a package
Should you encounter any problems, please see "Unix Installation Utility troubleshooting" below.

To uninstall a package

1. SelectUninstall a SafeNet package from the utility'sMain Menu.
A list of installed SafeNet packages is displayed.

2. Select the required package by typing the appropriate menu number and pressing Enter.
The utility verifies the action and executes the appropriate command for your platform.

3. On some platforms, you may be prompted for additional uninstallation options. On Linux, for example, you
can add a –nodeps option to suppress the checking of dependencies. These options should be selected
with appropriate care.

4. After completing uninstallation, the utility will return Success or Failure, scan the system again, and display
the current installation status.

5. You may now need to respond to any platform-specific messages to confirm that you wish to proceed with
the uninstallation. Press the Enter key to continue.

Unix Installation Utility troubleshooting

Problem Solution

Packages to install
or uninstall are not
visible

If no packages are shown to install or uninstall, close the utility, check that you are logged on
as root, and ensure your current directory is on the DVD or directory before running the utility
again.

The screen is
confused or does
not display correctly

This utility relies on the TERM environment parameter when creating colors andmeasuring
screen size, somake sure this is set correctly. Themost common values are xterm or vt100.
For example, to set TERM to vt100:
TERM=vt100# export TERM
> If the screen is confused, run the utility in “plain” mode as follows:

./safeNet-install.sh –p
> If the size of the terminal is not correctly set by termcap (for example: the headings

disappear off the top of the screen), override the screen size with the -s option:

./safeNet-install.sh -s 24x80
> If using an X system terminal window, do not resize the window while running the utility,

as it cannot sense the change.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 20

Problem Solution

The backspace key
does not operate
correctly

On some terminals, the backspace key does not operate correctly. If, after typing a number
and then backspace, the terminal returns “2^H” instead of an actual backspace:
> Type the current KILL character (normally ^U) and then enter the desired number (you will

need to do this each time a backspace is required)
> Exit the utility (perhaps with ^C) and use the stty(1) command to correct the erase

character before restarting the utility:

stty erase ^H

where ^H is the character created by pressing the backspace key.

This will fix the problem semi-permanently, for the current session in that terminal.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 21

Unix Manual Installation
These manual methods of installation are not recommended. For best results, see "Unix Installation Utility" on
page 18. This section provides instructions for the following operating systems:

> "Linux Installation" below

> "Solaris Installation" on the next page

> "UnixManual Installation" above

> "HP-UX Installation" on page 24
Before continuing with the SafeNet ProtectToolkit-J installation, ensure that you have installed SafeNet
ProtectToolkit-C Runtime. For details, please refer to the SafeNet ProtectToolkit-C Administration Guide.

The SafeNet ProtectToolkit-J Runtime package must be installed before the SafeNet ProtectToolkit-J Software
Development Kit (SDK).

NOTE To add or remove software, you must first become the super-user on the host
system.

Linux Installation
SafeNet ProtectToolkit-J for Linux is packaged using the standard rpm packaging software.

Installation File Details

PTKjprov-x.xx-y.i386 SafeNet ProtectToolkit-J Runtime Package

PTKjpsdk-x.xx-y.i386 SafeNet ProtectToolkit-J SDK Package

Use the rpm program to install the package(s).

To install the SafeNet ProtectToolkit-J Runtime Package
cd <Linux directory on the installation CD>
rpm -i PTKjprov-x.xx-y.i386.rpm

(where x.xx-y refers to the version of the software)

Repeat the process with the PTKjpsdk-x.xx-y.i386 file to install the SafeNet ProtectToolkit-J SDKPackage.
Once installed, the software will be ready to use under /opt/safenet/protecttoolkit5/ptk.

Adding directories to the required paths
To make use of the software you will need to add the /opt/safenet/protecttoolkit5/ptk/bin directory to your
execution path and /opt/safenet/protecttoolkit5/ptk/lib to your library path. The following commands may
be used to configure your paths for the sh(1) shell (please consult your Linux manual for other shells).

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 22

To add the directories to the required paths
PATH=/opt/safenet/protecttoolkit5/ptk/bin:$PATH
export PATH
LD_LIBRARY_PATH=/opt/safenet/protecttoolkit5/ptk/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Linux Uninstallation
To remove the software from your host system, use the rpm command with the appropriate package name as
a parameter.
rpm -e PTKjprov

Solaris Installation
SafeNet ProtectToolkit-J for Solaris is packaged using the standard Solaris packaging software.

Installation File Details

PTKjprov SafeNet ProtectToolkit-J Runtime Package

PTKjpsdk SafeNet ProtectToolkit-J SDK Package

Use the pkgadd program to install the package(s).

To install the SafeNet ProtectToolkit-J Runtime Package
cd <Solaris directory on the installation CD>
pkgadd -d `pwd`/PTKjprov

Repeat the process with the PTKjpsdk file to install the SafeNet ProtectToolkit-J SDKPackage.
Once installed, the software will be ready to use under /opt/safenet/protecttoolkit5/ptk.

Adding the directories to the required paths
To make use of the software, you will need to add the /opt/safenet/protecttoolkit5/ptk/bin directory to your
execution path and /opt/safenet/protecttoolkit5/ptk/lib to your library path. The following commands may
be used to configure your paths for the sh(1) shell (please consult your Solaris manual for other shells):

To add the directories to the required paths

32-bit:
export PATH=/opt/safenet/protecttoolkit5/ptk/bin:$PATH
export LD_LIBRARY_PATH=/opt/safenet/protecttoolkit5/ptk/lib:$LD_LIBRARY_PATH
64-bit:
export PATH=/opt/safenet/protecttoolkit5/ptk/bin/sparcv9:$PATH
export LD_LIBRARY_PATH=/opt/safenet/protecttoolkit5/ptk/lib/sparcv9

Solaris Uninstallation
To remove the software from your host system, use the pkgrm program and select the appropriate package
for removal.
pkgrm PTKjprov

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 23

IBM AIX Installation
SafeNet ProtectToolkit-J for AIX is packaged using the standard AIX packaging software.

Installation File Details

PTKjprov SafeNet ProtectToolkit-J Runtime Package

PTKjpsdk SafeNet ProtectToolkit-J SDK Package

Use the installp program to install the package(s).

To install the SafeNet ProtectToolkit-J Runtime Package
installp -acgNQqwX -d . PTKjprov.rte

Repeat the process with the PTKjpsdk file to install the SafeNet ProtectToolkit-J SDKPackage.
Once installed, the software will be ready to use under /opt/safenet/protecttoolkit5/ptk.

NOTE When installing SafeNet ProtectToolkit-J on an AIX 7.1 operating system, if you
encounter the message: "Errors were detected validating the files for
package PTKjpsdk.rte", it may be due to a missing user esaadmin in the default AIX
configuration. To avoid this error, create a user named esaadmin before installing SafeNet
ProtectToolkit-J.

Adding directories to the required paths
To use the software, you will need to add the /opt/safenet/protecttoolkit5/ptk/bin directory to your execution
path and /opt/safenet/protecttoolkit5/ptk/lib to your library path. The following commands may be used to
configure your paths for the sh shell (please consult your AIXmanual for other shells).

To add directories to the required paths
PATH=/opt/safenet/protecttoolkit5/ptk/bin:$PATH
export PATH
LIBPATH=/opt/safenet/protecttoolkit5/ptk/lib:$LIBPATH
export LIBPATH

IBM AIX Uninstallation
To remove the software from your host system, simply use the installp program and select the appropriate
package for removal.

For example:
installp -u PTKjprov

HP-UX Installation
SafeNet ProtectToolkit-J for HP-UX is packaged using the standard HP-UX packaging software.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 24

Installation File Details

PTKjprov.depot SafeNet ProtectToolkit-J Runtime Package

PTKjpsdk.depot SafeNet ProtectToolkit-J SDK Package

Use the swinstall program to install the package(s).

To install the SafeNet ProtectToolkit-J Runtime Package
swinstall PTKjprov.depot

Repeat the process with the PTKjpsdk file to install the SafeNet ProtectToolkit-J SDKPackage.
Once installed, the software will be ready to use under /opt/safenet/protecttoolkit5/ptk.

Adding directories to the required paths
To use the software, you will need to add the /opt/safenet/protecttoolkit5/ptk/bin directory to your execution
path and /opt/safenet/protecttoolkit5/ptk/lib to your library path. The following commands may be used to
configure your paths for the sh shell (please consult your HP-UXmanual for other shells).

To add directories to the required paths
PATH=$PATH:/opt/safenet/protecttoolkit5/ptk/bin
export PATH
SHLIB_PATH=$SHLIB_PATH:/opt/safenet/protecttoolkit5/ptk/lib
export SHLIB_PATH

HP-UX Uninstallation
To remove the software from your host system, simply use the swremove program and select the appropriate
package for removal.

For example:
swremove PTKjprov

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 25

Chapter 2: Troubleshooting

CHAPTER 2: Troubleshooting

The most common problems encountered while installing SafeNet ProtectToolkit-J on SafeNet ProtectToolkit-
C and the SafeNet ProtectServer HSM is that the encryption board driver is not loaded or functioning correctly.

Should you encounter any difficulties, first check that you have followed all the installation instructions in this
manual, and consult your relevant Installation Guide for troubleshooting options.

Try running the hsmstate utility. It should report each installed HSM (PCI or Network connect) is in NORMAL
Mode. If that works, then try running the ctconf utility. This will ensure that the Cryptoki runtime is working.
Finally, if neither resolves the issue, please contact Thales support ("Support Contacts" on page 10).

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 26

CHAPTER 3: JCA/JCE API Overview

The purpose of this appendix is to provide an introduction to the Java APIs that provide security and
cryptographic services. These are known as the Java Cryptography Architecture (JCA) and Java Cryptography
Extensions (JCE).

While reading this document, it is suggested you have both the JCA/JCEAPI documentation at hand. The JCA
documentation can be found in the Java release or online at: http://docs.oracle.com/

JCE documentation is currently available at http://docs.oracle.com/.

Finally, SafeNet ProtectToolkit-J includes a detailed reference manual detailing the specific algorithms
included, and the various parameters they accept. It also includes some extensions to the base JCA/JCEAPI.

This document assumes the reader is familiar with the Java programming language. It contains the following
chapters:

> "Encryption/Decryption" below

> "Message Digests" on page 31

> "Message Authentication Code (MAC)" on page 31

> "Authentication" on page 32

> "KeyManagement" on page 35

> "Error Handling and Exceptions" on page 40

Encryption/Decryption
The JCE supports encryption and decryption using symmetric algorithms (such as DES and RC4) and
asymmetric algorithms (such as RSA and ElGamal). The algorithms may be stream or block ciphers, with each
algorithm supporting different modes, padding or even algorithm-specific parameters.

This section details the following:

> "The Cipher Class" below

> "Cipher Input andOutput Streams" on the next page

> "SealedObject" on page 29

> "AlgorithmParameters" on page 30

TheCipher Class
The basic interface used to encipher or decipher data is the javax.crypto.Cipher class. The class provides
the necessary mechanism for encrypting and decrypting data using arbitrary algorithms from any of the
installed providers.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 27

http://docs.oracle.com/
http://docs.oracle.com/

Chapter 3: JCA/JCEAPI Overview

To create a Cipher instance, use one of the Cipher.getInstance()methods. This method will accept a
transformation string and an optional provider name. The transformation string is used to specify the
encryption algorithm as well as the cipher mode and padding. The transformation is specified in the form:

> "algorithm"

> "algorithm/mode/padding"

In the first instance, we are requesting the algorithm with its default mode and padding mechanism. The
second instance fully qualifies all options. For a list of support algorithms consult the provider's documentation.
Some common transformations are:

> "RC4"

> "DES/CBC/PKCS5Padding"

> "RSA/ECB/PKCS1Padding"

The following code will create a cipher for performing RC4 encryption or decryption, a cipher for doing RSA in
ECBmode with PKCS#1 padding provided by the ABA provider and a cipher for performing DESede
encryption/decryption in CBCmode with PKCS#5 padding:
Cipher rc4Cipher = Cipher.getInstance("RC4");
Cipher rsaCipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
Cipher desEdeCipher =

Cipher.getInstance("DESede/CBC/PKCS5Padding");
Once we have a Cipher instance, we will need to initialize the Cipher for encryption or decryption. We will also
need to provide a Key (see "KeyManagement" on page 35).
Key desKey, rsaKey;

desCipher.init(Cipher.ENCRYPT_MODE, desKey);
rsaCipher.init(Cipher.DECRYPT_MODE, rsaKey);

As you can see, the first value passed to the Cipher.init()method indicates whether we are initializing for
encryption or decryption. The second argument provides the key to use during encryption or decryption.

There are a number of other initialization methods for providing algorithm specific parameters (such as
Initialization Vectors, the number of rounds to use etc.). See "AlgorithmParameters" on page 30 for more
information.

Now that our Cipher is initialized, we can start processing data. To do so we use the Cipher.update() and
Cipher.doFinal()methods. The Cipher.update()methods may be used to incrementally process data. Once
all the data is processed, one of the Cipher.doFinal()methods must be called.
In the simplest usage, a single Cipher.doFinal() call may be passed all the data:

byte[] plainText = "hello world".getBytes();
byte[] cipherText = desCipher.doFinal(plainText);

Once the Cipher.doFinal()method has been called, the Cipher instance will be reset to the state it was in after
the last call to the Cipher.init()method. That means the Cipher may be reused to encipher or decipher more
data using the same Key and parameters that were specified in the initialization.

Cipher Input andOutput Streams
Rather than deal with the complications of buffering enciphered or deciphered data produced by the
Cipher.update()methods, it may be desirable to use a Java Input/Output Stream type interface. Fortunately,
the JCE provides such a mechanism.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 28

Chapter 3: JCA/JCEAPI Overview

The javax.crypto.CipherInputStream and javax.crypto.CipherOutputStream are based on the Java IO
filter streams. This allows them to process data and pass on that data to an underlying stream.

To create a cipher stream, firstly create and initialize a javax.crypto.Cipher instance and the underlying
stream and then instantiate the required stream type with these two arguments.

For example, the following code fragment will create a CipherOutputStream that will encipher its data (using
DES) and pass the result to a ByteArrayOutputStream. We can access the ciphertext by calling
ByteArrayOutputStream.toByteArray().

Key desKey;
Cipher cipher = Cipher.getInstance("DES");
cipher.init(Cipher.ENCRYPT_MODE, desKey);

ByteArrayOutputStream bout = new ByteArrayOutputStream();
CipherOutputStream cout =

new CipherOutputStream(bout, cipher);
cout.write("hello world".getBytes());
cout.close();

byte[] cipherText = bout.toByteArray();
Once we can encipher and decipher data using a simple stream, interface, we can create much more
complicated scenarios. For example, theOutputStream could just as easily be a SocketOutputStream, or
we could construct anObjectOutputStream on top of our cipher stream and encipher Java objects directly.

SealedObject
The javax.crypto.SealedObject class provides the mechanism to encipher a Serializable object. This class
allows the application to encipher a Java object and then recover the object, all through a simple interface. The
SealedObject is also serializable, to simplify the transport and storage of the enciphered objects.
ASealedObject can be constructed through either serialization or by its constructor. The constructor is used
to create a new enciphered object. The constructor's arguments are the object to encipher and the Cipher to
use. The provided Cipher instance must be initialized for encryption before the SealedObject is created. This
means calling a Cipher.init()method with Cipher.ENCRYPT_MODE as the mode, the required encryption
Key and any algorithm parameters.

The following fragment will create a newSealedObject containing the enciphered String "hello world":
Key desKey = ...
Cipher cipher = Cipher.getInstance("DES");
cipher.init(Cipher.ENCRYPT_MODE, deskey);

SealedObject so = new SealedObject("hello world", cipher);

To recover the original object, the SealedObject.getObject()methods may be used. These methods take
either a Cipher or Key object. When providing the Cipher parameter, the instance must be initialized in the
Cipher.DECRYPT_MODEmode, with the appropriate decryption key and the same algorithm parameters as
the original Cipher. When providing a Key parameter, the encryption algorithm and algorithm parameters are
extracted from the SealedObject.
The following fragment will extract a SealedObject object from anObjectInputStream and then recover the
protected object:

ObjectInputStream oin ...
Key desKey = ...

SealedObject so = (SealedObject)oin.readObject();
String plainText = (String)so.getObject(deskey);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 29

Chapter 3: JCA/JCEAPI Overview

One important security aspect to note with this class is that it does not use a digital signature to ensure the
object has not been tampered with in its serialized form. It is therefore possible that the object could be altered
in storage or transport without detection. Fortunately, the JCA provides the java.security.SignedObject
mechanism, which can be used in conjunction with the SealedObject class to avoid this problem. (See "Key
Conversion" on page 36 for a discussion on the SignedObject class).

Algorithm Parameters
Some cipher algorithms support parameterization. For example, the DES cipher in CBCmode can have an
initialization vector as an algorithm parameter and other ciphers may have a selectable block size or round
count. The JCE provides support for algorithm-independent initialization via the
java.security.spec.AlgorithmParameterSpec and java.security.AlgorithmParameters classes.
The java.security.spec.AlgorithmParameterSpec derived classes can be constructed programatically by
an application. The following classes are provided by the JCA/JCE:

java.security.spec

DSAParameterSpec Used to specify the parameters used with the DSA algorithm. The parameters consist of the
base g, prime p and sub-prime q.

javax.crypto.spec

DHGenParameterSpec The set of parameters used for generating Diffie-Hellman parameters for use in Diffie-
Hellman key agreement.

DHParameterSpec The set of parameters used with Diffie-Hellman as specified in PKCS#3.

IvParameterSpec An initialization vector for use with a feedback cipher. That is an array of bytes of length
equal to the block size of the cipher.

RC2ParameterSpec Parameters for the RC2 algorithm. The parameters are the effective key size and an
optional 8-byte initialization vector (only in feedback mode).

RC5ParameterSpec Parameters for the RC5 algorithm. The parameters are a version number, number of
rounds, a word size and an optional initialization vector (only in feedback mode).

Your provider may also include more classes for passing parameters to the algorithms it implements.

The JCA also has mechanisms for dealing with the provider-dependentAlgorithmParameters. This class is
used as an opaque representation of the parameters for a given algorithm and allows an application to store
persistently the parameters used by a Cipher.

There are three situations where an application may encounter an AlgorithmParameters instance:
1. Cipher.getParameters()

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 30

Chapter 3: JCA/JCEAPI Overview

After a Cipher has been initialized, it may have generated a set of parameters (based on supplied and/or
default values). The value returned by the getParameters()method allows the Cipher to be re-initialized to
exactly the same state.

2. AlgorithmParameters.getInstance()
Rather than generating the parameters via the Cipher class, it is possible to generate them either based on
an encoded format or an AlgorithmParameterSpec instance. To do so create an uninitialized instance
using the getInstance method and then initialize it by calling the appropriate init()method.

3. AlgorithmParameterGenerator.getParameters()

Finally, a set of parameters can be generated using the AlgorithmParameterGenerator. First, a
generator is created for the required algorithm using the getInstance()method. Then the generator is
initialized by calling one of the init()methods, finally to create the instance use the getParametersmethod.

This class provides the concept of algorithm-independent parameter generation, in that the initialization can be
based on a "size" and a source of randomness. In this case the "size" value is interpreted differently for each
algorithm.

Message Digests
The JCA provides support for the generation of message digests via the java.security.MessageDigest class.
This class uses the standard factory class design, so to create aMessageDigest instance, use the
getInstance()method with the desired algorithm name and optional provider as parameters.

Once created use the various update()methods to process the message data and then finally call the digest()
method to calculate the final digest. At this point the instance may be reused to calculate a digest for a new
message.

MessageDigest digest = MessageDigest.getInstance("SHA");

byte[] msg = "The message".getBytes();
digest.update(msg);

byte[] result = digest.digest();

Message Authentication Code (MAC)
The javax.crypto.Mac API is used to access a "Message Authentication Code" (MAC) algorithm. These
algorithms are used to check the integrity of messages upon receipt. There are two classes of MAC algorithms
in general, those that are based on message digests (known as HMAC algorithms) and those on encryption
algorithms. In both cases a shared secret is required.

AMac is used in the same fashion as a Cipher. First, use the factory methodMac.getInstance() to get the
provider implementation of the required algorithm, then initialize the algorithm with the appropriate key via the
Mac.init()method. Then, use theMac.update()method to process the message, and finally, use the
Mac.doFinal()method to calculate the MAC for the message.

To verify the message, follow the same procedure and compare the supplied MACwith the calculated MAC.

Note that it is not necessary to use theMac.init()method to check multiple messages if the shared secret has
not changed. TheMacwill be reset after the call toMac.doFinal() (or a call toMac.reset()).

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 31

Chapter 3: JCA/JCEAPI Overview

/*
* on the sender
*/
Mac senderMac = Mac.getInstance("HMAC-SHA1");
senderMac.init(shaMacKey);
byte[] mac = senderMac.doFinal(data);

/*
* now transmit message and mac to receiver
*/
Mac recMac = Mac.getInstance("HMAC-SHA1");
recMac.init(shaMacKey);
byte[] calcMac = recMac.doFinal(data);

for (int i = 0; i < calcMac.length; i ++)
{

if (calcMac[i] != mac[i])
{

/* bogus MAC! */
return false;

}
}

/* all okay */
return true;

Authentication
This section describes mechanisms for signing and verifying operations. It contains the following subsections:

> "Digital Signatures" below

> "Object Signing" on page 34

Digital Signatures
The java.security.Signature class provides the functionality of a digital signature algorithm. Digital signatures
are the digital equivalent of the traditional pen-and paper-signature. They can be used to authenticate the
originator of a document, as well as to prove that a person signed the document. Generally, digital signatures
are based on public-key encryption, which means that, unlike a MAC, anyone that has access to the public key
(and the document) can check the validity of the document.

The Signature interface supports generation and verification of signatures. Once a signature instance has
been created using the Signature.getInstance()method, it needs to be initialized with the
Signature.initSign()method for creation of a signature, or Signature.initVerify()method for verification of a
signature.

Once initialized, the document to be processed should be passed to the signature via the Signature.update()
methods. Once the entire document has been processed, the Signature.sign()method may be called to
generate the signature, or the Signature.verify()method to verify a supplied signature against a previously
generated signature.

After a signature has been generated or verified, the Signature instance is reset to the state it was in after it was
last initialized, allowing another signature to be generated or verified using the same key.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 32

Chapter 3: JCA/JCEAPI Overview

One such signature algorithm is "MD5 with RSA", defined in PKCS#1. This algorithm specifies that the
document to be signed is passed through the MD5 digest algorithm and then an ASN.1 block containing the
digest, along with a digest algorithm identifier, is enciphered using RSA.

To create such a signature:
/*
* Assume this private key is initialized
*/
PrivateKey rsaPrivKey;

/*
* Create the Signature instance and initialize
* it for signing with our private key
*/
Signature rsaSig = Signature.getInstance("MD5withRSA");
rsaSig.initSign(rsaPrivKey);

/*
* Pass in the document data via the update() methods
*/
byte[] document = "The document".getBytes();
rsaSig.update(document);

/*
* Generate the signature
*/
byte[] signature = rsaSig.sign();

To verify the generated signature:
/*
* Assume this public key is initialized
*/
PublicKey rsaPubKey;

/*
* Create the Signature instance and initialize
* it for signature verification with the public key
*/
Signature rsaSig = Signature.getInstance("MD5withRSA");
rsaSig.initVerify(rsaPubKey);

/*
* Pass in the document data via the update() methods
*/
byte[] document = "The document".getBytes();
rsaSig.update(document);

/*
* Check the generated signature against the supplied
* signature
*/
if (rsaSig.verify(signature))
{

// signature okay
}
else
{

// signature fails
}

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 33

Chapter 3: JCA/JCEAPI Overview

Object Signing
The java.security.SignedObject provides a mechanism for ensuring that a Java object can be authenticated
and cannot be tampered with without detection. The mechanism used is similar to the SealedObject in that the
object to be protected is serialized and then a signature is attached. The SealedObject is serializable, so it
may be stored or transmitted via the object streams.

To create a SignedObject, firstly create an instance of the signature algorithm to use via the
Signature.getInstance()method, then create the newSignedObject instance by providing the object to be
signed, the signing key and the Signature instance. Note that there is no need to initialize the Signature
instance; the SignedObject constructor will perform that function.

Signature signingEngine = Signature.getInstance(
"MD5withRSA");

SignedObject so = new SignedObject("hello world",
privateKey, signingEngine);

To verify a SignedObject, simply create the Signature instance for the required algorithm and then use the
SignedObject.verify()method with the appropriate PublicKey. Again, there is no need to initialize the
Signature instance.

Signature verifyEngine = Signature.getInstance(
"MD5withRSA");

if (so.verify(publicKey, verifyEngine))
{

// object okay, extract it
Object obj = so.getObject();

}
else
{

// object not authenticated
}

Note that this class only provides a mechanism for authentication and verification, it does not provide
confidentiality (i.e. encryption). The SealedObjectmay be used for this purpose (see "SealedObject" on
page 29). The following example combines these two classes to provide a confidential, authenticated, tamper-
proof object:

/*
* sealedObj will contain the signed, enciphered data
*/
SignedObject signedObj = new SignedObject(

"hello world", privateKey, signingEngine);
SealedObject sealedObj = new SealedObject(

signedObj, cipher);

/*
* to verify and recover the original object
*/
SignedObject newObj = sealedObject.getObject(cipher);
if (newObj.verify(publicKey, verificationEngine))
{

// object verified tampered
String str = (String)newObj.getObject();

}
else

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 34

Chapter 3: JCA/JCEAPI Overview

{
// object tampered with!

}

Key Management
The JCA/JCE framework manages keys in two forms, a provider-dependent format and a provider-
independent format.

The provider-dependent keys will implement either the java.security.Key interface (or one of its subclasses)
for public-key algorithms, or the javax.crypto.SecretKey interface for secret-key algorithms. Provider keys
can be generated randomly, via a key agreement algorithm or from their associated provider-independent
format.

The provider-independent formats will implement the java.security.spec.KeySpec interface. Subclasses of
this type exist for both specific key types and for different encoding types. For example, the
java.security.spec.RSAPublicKeySpec can be used to construct an RSA public key from its modulus and
exponent and a java.security.spec.PKCS8EncodedKeySpec can be used to construct a private key
encoded using PKCS#8.

Each Provider will supply a number of mechanisms that will create the provider-dependent keys or convert the
provider-independent keys into provider based keys.

This section contains information on the following:

> "Generating RandomKeys" below

> "KeyConversion" on the next page

> "Key Agreement Protocols" on page 38

> "Key Storage" on page 38

> "Certificates" on page 40

Generating Random Keys
The simplest mechanism to create keys for a given provider is to use their random key generators. Random
keys are most often generated for use as "session-keys", used for a given dialogue or session and then no
longer required. In the case of public-key algorithms, however, they may be generated once and then stored
for later use. The JCE framework provides key generation via the following classes:

javax.crypto.KeyGenerator
Generation of symmetric keys (such as DES, IDEA, RC4)

java.security.KeyPairGenerator
Generation of public/private key pairs (such as RSA)

For instance, to create a random 128-bit key for RC4 and initialize a Cipher for encryption with this key:
/*
* Create the key generator for the desired algorithm,
* and then initialize it for the required key size.
*/
KeyGenerator rc4KeyGen = KeyGenerator.getInstance("RC4");
rc4KenGen.init(128);

/*

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 35

Chapter 3: JCA/JCEAPI Overview

* Generate the key and then initialize the Cipher
*/
SecretKey rc4Key = rc4KeyGen.generateKey();
Cipher rc4Cipher = Cipher.getInstance("RC4");
rc4Cipher.init(Cipher.ENCRYPT_MODE, rc4Key);

Here, the SecretKey returned by the KeyGenerator.generateKey()method is a provider-dependent key.
The returned key can then be used with that provider's algorithms.

Some algorithms have keys that are considered weak, for example with a weak DES key the ciphertext may be
the same as the plaintext! Generally, the KeyGenerator will not generate those keys, but it is best to check the
provider documentation for details on the specific algorithm.

The code to generate a public/private key pair is quite similar:
KeyPairGenerator rsaKeyGen = KeyPairGenerator.getInstance("RSA");
rsaKeyGen.initialize(1024);

KeyPair rsaKeyPair = rsaKeyGen.generateKeyPair();
Cipher rsaCipher = Cipher.getInstance("RSA");
rsaCipher.init(Cipher.ENCRYPT_MODE, rsaKeyPair.getPrivate());

Key Conversion
Two interfaces are provided to convert between a provider-dependent Key and the provider-independent
KeySpec: java.security.KeyFactory and javax.crypto.SecretKeyFactory. The KeyFactory class is used
for public-key algorithms and the SecretKeyFactory class for secret-key algorithms.
An application may choose to store its keys in some way and then recreate the key using a KeySpec. For
example, the application may contain an embedded RSA public key as two integers; the RSAPublicKeySpec
along with a KeyFactory that can processRSAPublicKeySpec instances could then be used to create the
provider-dependent key.

Each provider will generally supply a number ofKeyFactory/SecretKeyFactory classes that will accept the
variousKeySpec classes and produce Key instances that may be used with the provider algorithms. These
factories are not likely to support allKeySpec types, so the provider documentation should provide the details
as to what conversions will be accepted.

There are a number ofKeySpec classes provided by the JCA/JCE:

java.security.spec

PKCS8EncodedKeySpec A DER encoding of a private key according to the format specified in the PKCS#8
standard.

X509EncodedKeySpec A DER encoding of a public or private key, according to the format specified in the X.509
standard.

RSAPublicKeySpec AnRSA public key

RSAPrivateKeySpec AnRSA private key

RSAPrivateCrtKeySpec AnRSA private key, with the Chinese Remainder Theorem (CRT) values

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 36

Chapter 3: JCA/JCEAPI Overview

java.security.spec

DSAPublicKeySpec A DSA public key

DSAPrivateKeySpec A DSA private key

javax.crypto.spec

DESKeySpec A DES secret key

DESedeKeySpec A DESede secret key

PBEKeySpec A user-chosen password that can be used with password base encryption (PBE)

SecretKeySpec A key that can be represented as a byte array and have no associated parameters. The encoding
type is known as RAW.

To convert a KeySpec instance into a provider based Key, firstly create a KeyFactory or SecretKeyFactory
of the appropriate type using the getInstance()method. Once the instance has been created, use the
KeyFactory.generatePrivate(), KeyFactory.generatePublic() or SecretKeyFactory.generateSecret()
method.

In the following example we will create a Key from a KeySpec and then recover the KeySpec from the Key.
/*
* This is the raw key
*/
byte[] keyBytes = { (byte)0x1, (byte)0x02, (byte)0x03,

(byte)0x04, (byte)0x05, (byte)0x06, (byte)0x07, (byte)0x08 };

/*
* Create the provider independent KeySpec
*/
DESKeySpec desKeySpec = new DESKeySpec(keyBytes);

/*
* Create the KeyFactory to do the Key<->KeySpec translation
*/
SecretKeyFactory keyFact = KeyFactory.getInstance("DES");

/*
* Create the provider based SecretKey
*/
SecretKey desKey = keyFact.generateSecret(desKeySpec);

/*
* Convert the provider Key into a generic KeySpec
*/
DESKeySpec desKeySpec2 = keyFact.getKeySpec(desKey,

DESKeySpec.class);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 37

Chapter 3: JCA/JCEAPI Overview

Key Agreement Protocols
Keys may also be generated using the javax.crypto.KeyAgreement API. This interface provides the
functionality of a key agreement (or key exchange) protocol. For example, a Diffie-Hellman KeyAgreement
instance would allow two or more parties to generate a shared Diffie-Hellman Key.

To generate the key, it is necessary to callKeyAgreement.doPhase() for each party in the exchange with a
Key object that represents the current state of the key agreement. The last call to KeyAgreement.doPhase()
should have the lastPhase set to true.
Once all the key agreement phases have been processed, the shared SecretKeymay be generated by calling
the KeyAgreement.generateSecret()method.
The KeyAgreement API does not define how each of the parties communicates the necessary information for
each exchange in the protocol. The required information is passed to the KeyAgreement.doPhase()method
as a Key. This Key will generally be generated using either a KeyGenerator or a KeyFactory. The provider
documentation will detail the specific steps required for a given protocol.

/*
* Create the KeyAgreement instance for the required
* protocol and initialize it with our key. In the
* case of Diffie-Hellman this would be our private
* key.
*/
KeyAgreement keyAg = KeyAgreement.getInstance("DH");
keyAg.init(ourKey);

/*
* Exchange information as per the key exchange
* protocol. For DH we would exchange public keys.
* Note since there is only two parties in this
* case the return value is not relevant.
*/
keyAg.doPhase(remotePubKey, true);

/*
* Create the shared secret-key
*/
SecretKey key = keyAg.generateSecret("DES");

Key Storage
Once a Key has been generated you may wish to store it for future use. Generally, you'll be saving
public/private keys so that you can reuse them at a later date in a key exchange.

The java.security.KeyStore API provides one mechanism for management of a number of keys and
certificates. There are two types of entries in a KeyStore: Key entries and Certificate entries. Key entries are
sensitive information, whereas certificates are not.

As Key entries are sensitive, they are therefore are protected by the KeyStore. The API allows for a password,
or pass phrase, to be attached to each key entry. What the actual implementation does with the password is
not defined, although it may be used to encipher the entry. A key entry may either be a SecretKey, or a
PrivateKey. In the case of a PrivateKey, the entry is saved along with a Certificate chain, which is the chain of
trust. The chain of trust starts with the Certificate containing the corresponding PublicKey and ends with a
self-signed certificate.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 38

Chapter 3: JCA/JCEAPI Overview

A certificate entry represents a "trusted certificate entry", that is, a Certificate whose identity we trust. This type
of entry can be used to authenticate other parties.

To create a KeyStore instance, use the KeyStore.getInstance()method. This will return an empty
KeyStorewhich may then be populated by calling the KeyStore.load()method. This method accepts an
InputStream instance and an optional password. Each individualKeyStorewill treat these parameters
differently, so check the provider documentation for details.

The Sun provider supplies a KeyStore known as "JKS". ThisKeyStore is used by the keytool and jarsigner
applications.

/*
* Create an instance of the Java Key Store (defined by Sun)
*/
KeyStore keyStore = KeyStore.getInstance("JKS");

To add a new entry into the KeyStore, use either setCertificateEntry() or one of the setKeyEntry()methods.
This will add the new entry with the associated alias.

char[] myPass;
SecretKey secretKey;

/*
* Store a SecretKey in the KeyStore, with "mypass"
* as the password.
*/
keyStore.setKeyEntry("mysecretkey", secretKey,

myPass, null);

/*
* assume that privateKey contains my PrivateKey
* and myCert contains a Certificate with the
* corresponding PublicKey
*/
PrivateKey privateKey;
Certificate myCert;

keyStore.setKeyEntry("myprivatekey", privateKey,
myPass, myCert);

To extract an entry, use the getKey()method to extract a Key or getCertificate() for a Certificate.
/*
* recover the SecretKey
*/
SecretKey key = (SecretKey)keyStore.getKey("mysecretkey",

myPass);

/*
* recover the PrivateKey
*/
PrivateKey privKey =

(PrivateKey)keyStore.getKey("myprivatekey", myPass);

/*
* recover the Certificate (containing the PublicKey)
* corresponding to our PrivateKey

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 39

Chapter 3: JCA/JCEAPI Overview

*/
Certificate cert = keyStore.getCertificate("myprivatekey");

If the KeyStore supports persistence via the store() and load()methods, the provider documentation will
explain what types of Key types may be stored.

Certificates
The JCA framework provides support for generic certificates, as well as X.509v3 certificates. Certificates may
be stored using the KeyStore API, or they may be generated from their encoded format (either the PEM or
PKCS#7 encoding).

To create a java.security.cert.Certificate instance from its encoded format, first create a
java.security.cert.CertificateFactory instance of the required type (eg X.509). Then use the
generateCertificate() or generateCertificates()methods to convert your InputStream into Certificate
instances.

CertificateFactory cf =
CertificateFactory.getInstance("X.509");

X509Certificate cert =
(X509Certificate)cf.generateCertificate(inputStream);

Two useful methods of the Certificate class are getPublicKey() and verify(). The first of these allows access
to the PublicKey of the certificate's owner and the second allows an application to verify that the certificate
was signed using the private key that corresponds to the provided public key.

The java.security.cert.X509Certificate class, which extends the Certificate class, provides methods to
access the other attributes of a X.509 certificate such as the Issuer's distinguished name or its validity period.

The keytool application provided with JDK can be used to generate certificates and store them in a KeyStore.
Check the JDK documentation for information on how to use this application.

Error Handling and Exceptions
The JCA/JCE framework includes a number of specialized exception classes:

java.security

DigestException Thrown if an error occurs during the final computation of the digest. Generally this
indicates that the output buffer is of insufficient size.

InvalidAlgorithmParameter
Exception

Thrown by classes that useAlgorithmParameters orAlgorithmParameterSpec
instances where the supplied instance is not compatible with the algorithm or the
supplied parameter was null and the algorithm requires a non-null parameter.

InvalidKeyException Thrown by the various classes that use Key objects, such as Signature,Mac, and
Cipherwhen the provided Key is not compatible with the given instance.

InvalidParameterException Only used in the deprecated interfaces in theSignature class and the deprecated
class Signer.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 40

Chapter 3: JCA/JCEAPI Overview

java.security

KeyStoreException Thrown by theKeyStore class when the object has not been initialized properly.

NoSuchAlgorithmException Thrown by the getInstance()methods when the requested algorithm is not available.

NoSuchProviderException Thrown by the getInstance()methods when the requested provider is not available.

SignatureException Thrown by theSignature class during signature generation or validation if the object
has not been initialized correctly or an error occurs in the underlying ciphers.

javax.crypto

BadPaddingException Thrown by theCipher class (or classes which use aCipher class to process data) if
this cipher is in decryptionmode, (un)padding has been requested, and the deciphered
data is not bounded by the appropriate padding bytes.

IllegalBlockSizeException Thrown by theCipher class (or classes which use aCipher class to process data) if
this cipher is a block cipher, no padding has been requested (only in encryptionmode),
and the total input length of the data processed by this cipher is not amultiple of block
size

NoSuchPaddingException Thrown by theCipher class by the getInstance()method when a transformation is
requested that contains a padding scheme that is not available.

ShortBufferException Thrown by theCipher class when an output buffer is supplied that is too small to hold
the result.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 41

CHAPTER 4: Supported Ciphers

SafeNet ProtectToolkit-J includes support for symmetric block and stream ciphers, as well as support for the
asymmetric RSA cipher. The following algorithms are available through the javax.crypto.Cipher interface:

Cipher Name Key Length
(bits)

Block Size
(bits)

Cipher
Modes

Padding

"DES" on page 44 64 64 ECB,CBC PKCS5Padding,
NoPadding

"DESede" on page 47 128,192 64 ECB,CBC PKCS5Padding,
NoPadding

"AES" on page 50 128,182,256 64 ECB,CBC PKCS5 Padding,
NoPadding

"IDEA" on page 52 128 64 ECB,CBC PKCS5Padding,
NoPadding

"CAST128" on page 54 8-128 64 ECB,CBC PKCS5Padding,
NoPadding

"RC2" on page 56 0-1024 64 ECB,CBC PKCS5Padding,
NoPadding

"RC4" on page 59 8-2048 N/A ECB NoPadding

PBEWithMD2AndDES
("PBE Ciphers" on page 61)

64 64 N/A N/A

PBEWithMD5AndDES
("PBE Ciphers" on page 61)

64 64 N/A N/A

PBEWithMD5AndCAST
("PBE Ciphers" on page 61)

128 128 N/A N/A

PBEWithSHA1AndCAST
("PBE Ciphers" on page 61)

128 128 N/A N/A

PBEWithSHA1AndTripleDES
("PBE Ciphers" on page 61)

128 128 N/A N/A

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 42

Chapter 4: Supported Ciphers

Cipher Name Key Length
(bits)

Block Size
(bits)

Cipher
Modes

Padding

"RSA" on page 63 512-4096 variable ECB PCKS1Padding,
NoPadding,
OAEP, OAEPPadding

Here, the Cipher name is the name of the Cipher as known to the JCE. To request a particular algorithm, pass
this name to the Cipher.getInstance()method. Some algorithms support different key lengths, and the
supported key lengths are listed in the table above. The block size is the size of data that is processed by the
cipher. During encryption, the amount of data processed must be a multiple of this size, unless padding is
employed (see below), and the encrypted output will therefore be a multiple of this size.

Electronic Codebook Mode (ECB) and Cipher Block Chaining (CBC) are defined in FIPS PUB 81: DESModes
of Operation. All ciphers will default to ECBmode.

PKCS#5 padding is defined in PKCS#5, and is the standard padding applied to block ciphers with a block size
of 64 bits. DES, DESede, IDEA, CAST128 and RC2 all default to "NoPadding". When PKCS5Padding is
employed with a block cipher, the input data for encryption can be any length, and will be padded to the
appropriate length before encryption.

PKCS#1 padding is defined in PKCS#1, and is the standard padding mechanism for the RSA cipher. When this
padding mechanism is used, PKCS#1 padding will be performed on each block encrypted. For public-key
encryption PKCS#1 type 1 blocks will be created, and for private-key encryption type 2 blocks will be created.
When “NoPadding” is requested, no PKCS#1 packing is applied to the data and the processing is performed as
per the X.509 (raw) RSA specification.

Cipher Algorithm Parameters
Currently, SafeNet ProtectToolkit-J does not support algorithm parameters.

Calls to Cipher.getParameters() will always return null. Neither does the provider include any
java.security.AlgorithmParameters classes.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 43

Chapter 4: Supported Ciphers

DES
This algorithm is a 64-bit block cipher with a 64-bit key. The effective key size is only 56-bit, however, as 8 bits
of the key are used for parity. The algorithm described in FIPS PUB 46-2.

DESCipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To
create an instance of this class use the Cipher.getInstance()method with “SAFENET” as the provider and
one of the following strings as the transformation:

> DES

> DES/ECB/NoPadding

> DES/ECB/PKCS5Padding

> DES/CBC/NoPadding

> DES/CBC/PKCS5Padding

Using the “DES” transformation, the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will
be padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding
from the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
When the Cipher is initialized in CBCmode, the Initialization Vector (IV) may be specified by passing a
javax.crypto.spec.IvParameterSpec instance to the Cipher.init()method. When decrypting in this mode, a
valid IVmust be specified in the Cipher.init()method. For encryption, however, a random IVwill be generated
if none is specified (the IVmay be retrieved using the Cipher.getIV()method).
The IVmay be provided as a java.security.AlgorithmParameters or a
javax.crypto.spec.IvParameterSpec instance. If the initialization is done using an AlgorithmParameters
instance, it must be convertible to an IvParameterSpec using the
AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The
only supported parameter for this class is the initialization vector, which may be determined using the
Cipher.getIV()method.

DESKey
The DESCipher requires either a SecretKeySpec or SafeNet ProtectToolkit-J provider DESKey during
initialization.

To create an appropriate SecretKeySpec, pass an 8 byte array and the algorithm name “DES” to the
SecretKeySpec constructor. For example:
byte[] keyBytes = { 0x01, 0x23, 0x45, 0x67,

0x89, 0xAB, 0xCD, 0xEF };
SecretKeySpec desKey = new SecretKeySpec(keyBytes, “DES”);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 44

Chapter 4: Supported Ciphers

Alternatively, a random SafeNet ProtectToolkit-J DES key can be generated randomly using the
KeyGenerator as described in "Public Keys" on page 79, or from a provider-independent form as described in
"Key Specifications" on page 84. The DES key may also be stored in the SafeNet ProtectToolkit-JKeyStore,
as described in"Key Storage" on page 82 .

The SafeNet ProtectToolkit-J DES key will return the string “DES” as its algorithm name, “RAW” as its
encoding. However, since the key is stored within the hardware, the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in SafeNet ProtectToolkit-J will always be marked as sensitive. It is possible, however, to
access any Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been
modified.

DESKeyGenerator
The DESKeyGenerator is used to generate random DES keys. The generated key will be a hardware key that
has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are marked
as sensitive, their getEncoded()method will return null.
During initialization, the strength and random parameters are ignored, as all keys are 64-bits and the hardware
includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a SafeNet ProtectToolkit-J Key instance
may only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.

DESSecretKeyFactory
The DESSecretKeyFactory is used to construct SafeNet ProtectToolkit-J keys from their provider-
independent form. The provider independent form of the DES key is the javax.crypto.spec.DESKeySpec
class.

Keys generated using the SecretKeyFactory are not thread-safe. That is, a SafeNet ProtectToolkit-J Key
instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given time.
See"KeyGeneration" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.
For example, to create the provider based key from its provider-independent form:
byte[] keyBytes = { 0x01, 0x23, 0x45, 0x67,

0x89, 0xAB, 0xCD, 0xEF };
DESKeySpec desKeySpec = new DESKeySpec(keyBytes);
SecretKeyFactory desKeyFact =

SecretKeyFactory.getInstance(“DES”, “SAFENET”);
SecretKey desKey = desKeyFact.generateSecret(desKeySpec);

DESExample Code
The following example code will create a random DES key, then create a DES cipher in CBCmode with
PKCS5Padding. Next, it initializes the cipher for encryption using the newly-created key. We then save the
initialization vector and encrypt the string "hello world".
To perform the decryption, we re-initialize the cipher in decrypt mode, with the same key and the initialization
vector that was created during encryption.
KeyGenerator keyGen = KeyGenerator.getInstance("DES",

"SAFENET");
Key desKey = keyGen.generateKey();

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 45

Chapter 4: Supported Ciphers

Cipher desCipher = Cipher.getInstance("DES/CBC/PKCS5Padding",
"SAFENET");

desCipher.init(Cipher.ENCRYPT_MODE, desKey);
byte[] iv = desCipher.getIV();
byte[] cipherText = desCipher.doFinal(

"hello world".getBytes());
desCipher.init(Cipher.DECRYPT_MODE, desKey,

new IvParameterSpec(iv));
byte[] plainText = desCipher.doFinal(cipherText);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 46

Chapter 4: Supported Ciphers

DESede
This algorithm, known as triple-DES, is a 64-bit block cipher with a 192-bit key, although 24 bits of the key are
parity bits. This algorithm works by splitting the 192-bit key into three 64-bit keys and then applying the basic
DES cipher, first in the encrypt mode, second in the decrypt mode, and finally in the encrypt mode. The
algorithm is described in ANSI X9.17. It is also possible to use a double-length key (128 bits), in this case the
first key is reused as the final key.

DESedeCipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To
create an instance of this class, use the Cipher.getInstance()method with “SAFENET” as the provider and
one of the following strings as the transformation:

> DESede

> DESede/ECB/NoPadding

> DESede/ECB/PKCS5Padding

> DESede/CBC/NoPadding

> DESede/CBC/PKCS5Padding

Using the “DESede” transformation, the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will
be padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding
from the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
When the Cipher is initialized in CBCmode, the Initialization Vector (IV) may be specified by passing a
javax.crypto.spec.IvParameterSpec instance to the Cipher.init()method. When decrypting in this mode, a
valid IVmust be specified in the Cipher.init()method. For encryption, however, a random IVwill be generated
if none is specified (the IVmay be retrieved using the Cipher.getIV()method).
The IVmay be provided as a java.security.AlgorithmParameters or a
javax.crypto.spec.IvParameterSpec instance. If the initialization is done using an AlgorithmParameters
instance, it must be convertible to an IvParameterSpec using the
AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The
only supported parameter for this class is the initialization vector, which may be determined using the
Cipher.getIV()method.

DESede Key
The DESede Cipher requires either a SecretKeySpec or SafeNet ProtectToolkit-J provider DESede Key
during initialization. The DESede key may be either a double- or triple-length key.

To create an appropriate SecretKeySpec, pass a 16 or 24-byte array and the algorithm name “DESede” to
the SecretKeySpec constructor. For example:

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 47

Chapter 4: Supported Ciphers

byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,
0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec desEdeKey = new SecretKeySpec(keyBytes,
“DESede”);

Alternatively, a random SafeNet ProtectToolkit-J DESede key can be generated using the KeyGenerator as
described in section "Public Keys" on page 79, or a provider-independent form as described in section "Key
Specifications" on page 84. The DESede key may also be stored in the SafeNet ProtectToolkit-JKeyStore, as
described in"Key Storage" on page 82 .

The SafeNet ProtectToolkit-J DESede key will return the string “DESede” as its algorithm name, and “RAW”
as its encoding. However, since the key is stored within the hardware, the actual key encoding may not be
available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in SafeNet ProtectToolkit-J will always be marked as sensitive. It is possible, however, to
access any Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been
modified.

DESede KeyGenerator
The DESede KeyGenerator is used to generate random DESede double or triple length keys. The generated
key will be a hardware key that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes
set. Since these keys are marked as Sensitive, their getEncoded()method will return null.
During initialization, the strength parameter may be 128 to specify a double length key or 196 to specify a triple-
length key. If no strength is specified, a triple-length key will be generated. The random parameter is ignored
as the hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a SafeNet ProtectToolkit-J Key instance
may only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.

DESede SecretKeyFactory
The DESede SecretKeyFactory is used to construct SafeNet ProtectToolkit-J keys from their provider-
independent form. The provider-independent form of the DESede key is the
javax.crypto.spec.DESedeKeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a SafeNet ProtectToolkit-J Key
instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given time.
See"KeyGeneration" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.
For example, to create the provider based key from its provider independent form (in this case we are
generating a triple-length key; specify 16 bytes for a double-length key):
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF,
0x39, 0xDF, 0x28, 0x94,
0x11, 0x93, 0x55, 0x67,
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

DESedeKeySpec desEdeKeySpec = new DESedeKeySpec(keyBytes);
SecretKeyFactory desEdeKeyFact =

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 48

Chapter 4: Supported Ciphers

SecretKeyFactory.getInstance(“DESede”, “SAFENET”);
SecretKey desEdeKey =

desEdeKeyFact.generateSecret(desEdeKeySpec);

DESede Example Code
See "DES" on page 44 for the simple DES example. To convert the example to use DESede, use “DESede” in
place of “DES”.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 49

Chapter 4: Supported Ciphers

AES
This algorithm is an implementation of AES, which is a 64 bit block cipher with a variable length key 128, 192 or
256 bits long.

AESCipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To
create an instance of this class use the Cipher.getInstance()method with “SAFENET” as the provider and
one of the following strings as the transformation:

> AES

> AES/ECB/NoPadding

> AES/CBC/NoPadding

> AES/CBC/PKCS5Padding

Using the “AES” transformation, the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will
be padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding
from the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
When the Cipher is initialized in CBCmode, the Initialization Vector (IV) may be specified by passing a
javax.crypto.spec.IvParameterSpec instance to the Cipher.init()method. When decrypting in this mode, a
valid IVmust be specified in the Cipher.init()method. For encryption, however, a random IVwill be generated
if none is specified (the IVmay be retrieved using the Cipher.getIV()method).
The IVmay be provided as a java.security.AlgorithmParameters or a
javax.crypto.spec.IvParameterSpec instance. If the initialization is done using an AlgorithmParameters
instance, it must be convertible to an IvParameterSpec using the
AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The
only supported parameter for this class is the initialization vector, which may be determined using the
Cipher.getIV()method.

AESKey
The AESCipher requires either a SecretKeySpec or SafeNet ProtectToolkit-J provider AESKey during
initialization. AES keys can be 128, 192, or 256 bits long.

To create an appropriate SecretKeySpec, pass a 16, 24 or 32 byte array and the algorithm name “AES” to
the SecretKeySpec constructor.
For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xB6, 0xDC, 0x34,
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec aesKey = new SecretKeySpec(keyBytes, “AES”);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 50

Chapter 4: Supported Ciphers

Alternatively, a random SafeNet ProtectToolkit-J AES key can be generated using the KeyGenerator as
described in "KeyGeneration" on page 78, or a provider-independent form. The AES key may also be stored in
the SafeNet ProtectToolkit-JKeyStore, as described in "Key Storage" on page 82.
The SafeNet ProtectToolkit-J AES key will return the string “AES” as its algorithm name, “RAW” as its encoding.
However, since the key is stored within the hardware the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in SafeNet ProtectToolkit-J will always be marked as sensitive. It is possible, however, to
access any Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been
modified.

AESKeyGenerator
The AESKeyGenerator is used to generate random AES keys. The generated key will be a hardware key that
has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are
marked as sensitive their getEncoded()method will return null.
During initialization, the strength parameter may only be 128, 192, or 256 bits, with the default size being 128
bits. The random parameter is ignored as the hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a SafeNet ProtectToolkit-J Key instance
may only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.

AESSecretKeyFactory
The AESSecretKeyFactory is used to construct SafeNet ProtectToolkit-J keys from their provider-
independent form. The provider-independent form of the AES key is the
au.com.safenet.crypto.spec.AESKeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a SafeNet ProtectToolkit-J Key
instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given time.
See"KeyGeneration" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.
For example, to create the provider-based key from its provider-independent form:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

AESKeySpec ideaKeySpec = new AESKeySpec(keyBytes);
SecretKeyFactory aesKeyFact =

SecretKeyFactory.getInstance(“AES”, “SAFENET”);
SecretKey aesKey = aesKeyFact.generateSecret(aesKeySpec);

AESExample Code
See "DES" on page 44 for the simple DES example. To convert the example to use AES, use “AES” in place of
“DES”.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 51

Chapter 4: Supported Ciphers

IDEA
This algorithm is a 64-bit block cipher with a 128-bit key. The last patents on this algorithm expired in 2012, and
IDEA is now free for all uses.

IDEACipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To
create an instance of this class, use the Cipher.getInstance()method with “SAFENET” as the provider and
one of the following strings as the transformation:

> IDEA

> IDEA/ECB/NoPadding

> IDEA/ECB/PKCS5Padding

> IDEA/CBC/NoPadding

> IDEA/CBC/PKCS5Padding

Using the “IDEA” transformation the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will
be padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding
from the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
When the Cipher is initialized in CBCmode, the Initialization Vector (IV) may be specified by passing a
javax.crypto.spec.IvParameterSpec instance to the Cipher.init()method. When decrypting in this mode, a
valid IVmust be specified in the Cipher.init()method. For encryption, however, a random IVwill be generated
if none is specified (the IVmay be retrieved using the Cipher.getIV()method).
The IVmay be provided as a java.security.AlgorithmParameters or a
javax.crypto.spec.IvParameterSpec instance. If the initialization is done using an AlgorithmParameters
instance, it must be convertible to an IvParameterSpec using the
AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The
only supported parameter for this class is the initialization vector, which may be determined using the
Cipher.getIV()method.

IDEAKey
The IDEACipher requires either a SecretKeySpec or SafeNet ProtectToolkit-J provider IDEAKey during
initialization. The IDEA key is always 128 bits long.

To create an appropriate SecretKeySpec, pass a 16 byte array and the algorithm name “IDEA” to the
SecretKeySpec constructor. For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xB6, 0xDC, 0x34,
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec ideaKey = new SecretKeySpec(keyBytes, “IDEA”);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 52

Chapter 4: Supported Ciphers

Alternatively, a random SafeNet ProtectToolkit-J IDEA key can be generated using the KeyGenerator as
described in section "Public Keys" on page 79, or from a provider-independent form as described in section
"Key Specifications" on page 84. The IDEA key may also be stored in the SafeNet ProtectToolkit-JKeyStore
as described in"Key Storage" on page 82 .

The SafeNet ProtectToolkit-J IDEA key will return the string “IDEA” as its algorithm name, “RAW” as its
encoding. However, since the key is stored within the hardware, the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in SafeNet ProtectToolkit-J will always be marked as sensitive. It is possible, however, to
access any Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been
modified.

IDEAKeyGenerator
The IDEAKeyGenerator is used to generate random IDEA keys. The generated key will be a hardware key
that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are
marked as sensitive their getEncoded()method will return null.
During initialization the strength and random parameters are ignored, as all keys are 128-bits and the
hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a SafeNet ProtectToolkit-J Key instance
may only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.

IDEASecretKeyFactory
The IDEASecretKeyFactory is used to construct SafeNet ProtectToolkit-J keys from their provider-
independent form. The provider-independent form of the IDEA key is the
au.com.safenet.crypto.spec.IDEAKeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a SafeNet ProtectToolkit-J Key
instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given time.
See"KeyGeneration" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.
For example, to create the provider-based key from its provider-independent form:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

IDEAKeySpec ideaKeySpec = new IDEAKeySpec(keyBytes);
SecretKeyFactory ideaKeyFact =

SecretKeyFactory.getInstance(“IDEA”, “SAFENET”);
SecretKey ideaKey = ideaKeyFact.generateSecret(ideaKeySpec);

IDEAExample Code
See "DES" on page 44 for the simple DES example. To convert the example to use IDEA, use “IDEA” in place
of “DES”.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 53

Chapter 4: Supported Ciphers

CAST128
This algorithm is an implementation of CAST-128, a 64-bit block cipher with a variable length key from 8 to 128
bits. The algorithm is described in RFC-2144.

CAST128Cipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To
create an instance of this class, use the Cipher.getInstance()method with “SAFENET” as the provider and
one of the following strings as the transformation:

> CAST128

> CAST128/ECB/NoPadding

> CAST128/ECB/PKCS5Padding

> CAST128/CBC/NoPadding

> CAST128/CBC/PKCS5Padding

Using the “CAST128” transformation, the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will
be padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding
from the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
When the Cipher is initialized in CBCmode, the Initialization Vector (IV) may be specified by passing a
javax.crypto.spec.IvParameterSpec instance to the Cipher.init()method. When decrypting in this mode, a
valid IVmust be specified in the Cipher.init()method. For encryption, however, a random IVwill be generated
if none is specified (the IVmay be retrieved using the Cipher.getIV()method).
The IVmay be provided as a java.security.AlgorithmParameters or a
javax.crypto.spec.IvParameterSpec instance. If the initialization is done using an AlgorithmParameters
instance, it must be convertible to an IvParameterSpec using the
AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The
only supported parameter for this class is the initialization vector, which may be determined using the
Cipher.getIV()method.

CAST128 Key
The CAST128 Cipher requires either a SecretKeySpec or SafeNet ProtectToolkit-J provider CAST128 Key
during initialization. The CAST128 key may be any length of 8 to 128 bits.

To create an appropriate SecretKeySpec, pass an array of up to 16 bytes and the algorithm name
“CAST128” to the SecretKeySpec constructor. For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDF, 0x28, 0x94,
0x11, 0x93, 0x55, 0x67,

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 54

Chapter 4: Supported Ciphers

0x39, 0xAC, 0xCD, 0xFF };
SecretKeySpec castKey = new SecretKeySpec(keyBytes,

“CAST128”);

Alternatively, a random SafeNet ProtectToolkit-J CAST128 key can be generated using the KeyGenerator as
described in "KeyGeneration" on page 78, or, a provider-independent form. The CAST128 key may also be
stored in the SafeNet ProtectToolkit-JKeyStore as described in "Key Storage" on page 82.
The SafeNet ProtectToolkit-J CAST128 key will return the string “CAST128” as its algorithm name, “RAW” as
its encoding. However, since the key is stored within the hardware, the actual key encoding may not be
available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in SafeNet ProtectToolkit-J will always be marked as sensitive. It is possible, however, to
access any Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been
modified.

CAST128 KeyGenerator
The CAST128 KeyGenerator is used to generate random CAST128 keys. The generated key will be a
hardware key that has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since
these keys are marked as sensitive, their getEncoded()method will return null.
During initialization, the strength parameter may be any length from 8 to 128. The default key size is 128 bits.
The random parameter is ignored as the hardware includes a cryptographically-secure random source.

Keys generated using the KeyGenerator are not thread-safe. That is, a SafeNet ProtectToolkit-J Key instance
may only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.

CAST128 SecretKeyFactory
The CAST128 SecretKeyFactory is used to construct SafeNet ProtectToolkit-J keys from their provider-
independent form. The provider-independent form of the CAST128 key is the
au.com.safenet.crypto.spec.CASTKeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a SafeNet ProtectToolkit-J Key
instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given time.
See"KeyGeneration" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.
For example, to create the provider-based key from its provider-independent form:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

CAST128KeySpec castKeySpec = new CAST128KeySpec(keyBytes);
SecretKeyFactory castKeyFact =

SecretKeyFactory.getInstance(“CAST128”, “SAFENET”);
SecretKey castKey=castKeyFact.generateSecret(castEdeKeySpec);

CAST128 Example Code
See "DES Example Code" on page 45 for the simple DES example. To convert the example to use CAST128,
use “CAST128” in place of “DES”.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 55

Chapter 4: Supported Ciphers

RC2
This algorithm is a 64-bit block cipher with a variable-length key usually 40-bit or 128-bit. RC2 was designed by
Ron Rivest and is a trademark of RSAData Security. For more information on this algorithm, see RFC-2268.

RC2Cipher Initialization
This cipher supports both ECB and CBCmodes, and may be used with NoPadding or PKCS5Padding. To
create an instance of this class, use the Cipher.getInstance()method with “SAFENET” as the provider and
one of the following strings as the transformation:

> RC2

> RC2/ECB/NoPadding

> RC2/ECB/PKCS5Padding

> RC2/CBC/NoPadding

> RC2/CBC/PKCS5Padding

Using the “RC2” transformation, the Cipher will default to ECB and NoPadding.
If the NoPaddingmode is selected, the input data must be a multiple of 8 bytes; otherwise, the encrypted or
decrypted result will be truncated. In PKCS5Padding, arbitrary data lengths are accepted; the ciphertext will
be padded to a multiple of 8 bytes, as described in PKCS#5. The decryption process will remove the padding
from the data so that the correct plaintext is returned.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
The RC2 Cipher may also be initialized with an instance of the javax.crypto.spec.RC2ParameterSpec class.
With this class it is possible to supply an initialization vector and an effective key size. If the Cipher is not
initialized in this way, the effective key size will default to 128.

The IVmay be provided as a java.security.AlgorithmParameters or a
javax.crypto.spec.IvParameterSpec instance. If the initialization is done using an AlgorithmParameters
instance, it must be convertible to an IvParameterSpec using the
AlgorithmParameters.getParameterSpec()method.
This Cipher does not support the Cipher.getParameters()method; this method will always return null. The
only supported parameter for this class is the initialization vector, which may be determined using the
Cipher.getIV()method.

RC2Key
The RC2 Cipher requires either a SecretKeySpec or SafeNet ProtectToolkit-J provider RC2 Key during
initialization. The RC2 key may be any length of 8 to 1024 bits.

To create an appropriate SecretKeySpec, pass an array of up to 128 bytes and the algorithm name “RC2” to
the SecretKeySpec constructor. For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDF, 0x28, 0x94,
0x11, 0x93, 0x55, 0x67,

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 56

Chapter 4: Supported Ciphers

0x39, 0xAC, 0xCD, 0xFF };
SecretKeySpec rc2Key = new SecretKeySpec(keyBytes, “RC2”);

Alternatively, a random SafeNet ProtectToolkit-J RC2 key can be generated using the KeyGenerator as
described in section "Public Keys" on page 79, or a provider-independent form as described in section "Key
Specifications" on page 84. The RC2 key may also be stored in the SafeNet ProtectToolkit-JKeyStore, as
described in"Key Storage" on page 82.

The SafeNet ProtectToolkit-J RC2 key will return the string “RC2” as its algorithm name, “RAW” as its
encoding. However, since the key is stored within the hardware, the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in SafeNet ProtectToolkit-J will always be marked as sensitive. It is possible, however, to
access any Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been
modified.

RC2KeyGenerator
The RC2 KeyGenerator is used to generate random RC2 keys. The generated key will be a hardware key that
has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are
marked as sensitive, their getEncoded()method will return null.
During initialization, the strength parameter may be any multiple of 8 up to 1024 inclusive. The default key size
is 128 bits. The random parameter is ignored as the hardware includes a cryptographically-secure random
source.

Keys generated using the KeyGenerator are not thread-safe. That is, a SafeNet ProtectToolkit-J Key instance
may only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.

RC2SecretKeyFactory
The RC2 SecretKeyFactory is used to construct SafeNet ProtectToolkit-J keys from their provider-
independent form. The provider-independent form of the RC2 key is the
au.com.safenet.crypto.spec.RC2KeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a SafeNet ProtectToolkit-J Key
instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given time.
See"KeyGeneration" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.
For example, to create the provider based key from its provider-independent form:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

RC2KeySpec rc2KeySpec = new RC2KeySpec(keyBytes);
SecretKeyFactory rc2KeyFact =

SecretKeyFactory.getInstance(“RC2”, “SAFENET”);
SecretKey rc2Key = rc2KeyFact.generateSecret(castEdeKeySpec);

RC2Example Code
See"DES" on page 44 for the simple DES example. To convert the example to use RC2, use “RC2” in place of
“DES”.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 57

Chapter 4: Supported Ciphers

Replace the IvParameterSpec call with the RC2ParameterSpec call, as illustrated in the following code
example:
KeyGenerator keyGen = KeyGenerator.getInstance("RC2","SAFENET");
Key rcKey = keyGen.generateKey();
Cipher rc2Cipher = Cipher.getInstance("RC2/CBC/PKCS5Padding","SAFENET");
rc2Cipher.init(Cipher.ENCRYPT_MODE, rcKey);
byte[] iv = rc2Cipher.getIV();
byte[] cipherText = rc2Cipher.doFinal("hello world".getBytes());
rc2Cipher.init(Cipher.DECRYPT_MODE, rcKey,new RC2ParameterSpec(iv));
byte[] plainText = rc2Cipher.doFinal(cipherText);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 58

Chapter 4: Supported Ciphers

RC4
This algorithm is a stream cipher with a variable length key, usually 40-bit or 128-bit. RC4 is a trademark of
RSAData Security. A description of the algorithm may be found in Applied Cryptography by Bruce Schneier.

RC4Cipher Initialization
Since the RC4 Cipher is a stream cipher, it always operates in the same mode, which may be specified by the
transformations “RC4” or “RC4/ECB/NoPadding”. To create an instance of this class, use the
Cipher.getInstance()method with “SAFENET” as the provider and one of the valid transformation strings.
The size of the output of this cipher will always be the same as that of the input.

This Cipher will accept a javax.crypto.spec.SecretKeySpec or
au.com.safenet.crypto.provider.CryptokiSecretKey as the key parameter during initialization.
This Cipher does not support initialization with algorithm parameters, and so the Cipher.getParameters()
method will always return null.

RC4Key
The RC4 Cipher requires either a SecretKeySpec or SafeNet ProtectToolkit-J provider RC4 Key during
initialization. The RC4 key may be any length of 8 to 2048 bits.

To create an appropriate SecretKeySpec, pass an array of up to 256 bytes and the algorithm name “RC4” to
the SecretKeySpec constructor. For example:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDF, 0x28, 0x94,
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

SecretKeySpec desKey = new SecretKeySpec(keyBytes, “RC4”);

Alternatively, a random SafeNet ProtectToolkit-J RC4 key can be generated using the KeyGenerator, as
described in section "Public Keys" on page 79, or a provider-independent form as described in section "Key
Specifications" on page 84. The RC4 key may also be stored in the SafeNet ProtectToolkit-JKeyStore, as
described in"Key Storage" on page 82 .

The SafeNet ProtectToolkit-J RC4 key will return the string “RC4” as its algorithm name, “RAW” as its
encoding. However, since the key is stored within the hardware, the actual key encoding may not be available.

The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in SafeNet ProtectToolkit-J will always be marked as sensitive. It is possible, however, to
access any Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been
modified.

RC4KeyGenerator
The RC4 KeyGenerator is used to generate random RC4 keys. The generated key will be a hardware key that
has the Cryptoki CKA_EXTRACTABLE and CKA_SENSITIVE attributes set. Since these keys are marked
as sensitive, their getEncoded()method will return null.
During initialization, the strength parameter may be any length from 8 to 2048. The default key size is 128 bits.
The random parameter is ignored as the hardware includes a cryptographically-secure random source.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 59

Chapter 4: Supported Ciphers

Keys generated using the KeyGenerator are not thread-safe. That is, a SafeNet ProtectToolkit-J Key instance
may only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.

RC4SecretKeyFactory
The RC4 SecretKeyFactory is used to construct SafeNet ProtectToolkit-J keys from their provider-
independent form. The provider-independent form of the RC4 key is the
au.com.safenet.crypto.spec.RC4KeySpec class.
Keys generated using the SecretKeyFactory are not thread-safe. That is, a SafeNet ProtectToolkit-J Key
instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given time.
See"KeyGeneration" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.
For example, to create the provider-based key from its provider-independent form:
byte[] keyBytes = { 0x41, 0x22, 0x35, 0x17,

0x39, 0xDB, 0xDC, 0xEF
0x11, 0x93, 0x55, 0x67,
0x39, 0xAC, 0xCD, 0xFF };

RC4KeySpec castKeySpec = new RC4KeySpec(keyBytes);
SecretKeyFactory castKeyFact =

SecretKeyFactory.getInstance(“RC4”, “SAFENET”);
SecretKey castKey=castKeyFact.generateSecret(castEdeKeySpec);

RC4Example Code
The following example code will create a random RC4 key, then create a RC4 cipher. Next, it initializes the
cipher for encryption using the newly-created key. We then save the initialization vector and encrypt the string
"hello world".
To perform the decryption, we simply re-initialize the cipher in decrypt mode, with the same key. In this case
there is no need to process the initialization vector, as there is none with the RC4 algorithm.
KeyGenerator keyGen = KeyGenerator.getInstance("RC4",

"SAFENET");
Key rc4Key = keyGen.generateKey();
Cipher rc4Cipher = Cipher.getInstance("RC4", "SAFENET");
rc4Cipher.init(Cipher.ENCRYPT_MODE, rc4Key);
byte[] cipherText = rc4Cipher.doFinal(

"hello world".getBytes());
rc4Cipher.init(Cipher.DECRYPT_MODE, rc4Key);
byte[] plainText = desCipher.doFinal(cipherText);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 60

Chapter 4: Supported Ciphers

PBE Ciphers
APBECipher is a password based cipher. It allows keying of a cipher based on a user supplied password.
PKCS#5 is the standard which defines the generic PBE algorithm used by all PBE algorithms except for the
PBEWithSHA1AndTripleDES algorithm, which uses PKCS#12 (see PKCS #12: Personal Information
Exchange Syntax Standard). A particular PBE implementation will combine a message digest algorithm (such
as MD5) with a symmetric encryption algorithm (DES, for example).

SafeNet ProtectToolkit-J includes five password-based Ciphers. They are essentially identical, with the
password-generation differences below:

> PBEWithMD2AndDES - uses MD2 in password generation

> PBEWithMD5AndDES - uses MD5 in password generation

> PBEWithMD5AndCAST - uses MD5 in password generation
> PBEWithSHA1AndCAST - uses SHA1 in password generation
> PBEWithSHA1AndTripleDES - uses SHA1 in password generation

As the names suggest, these ciphers use either DES, CAST, or TripleDES as their encryption algorithm, and
are therefore 64-bit block ciphers. They are all operated with the block cipher in CBCmode; however, the
initialization vector is determined from the password, so there is no need to supply its value.

PBECipher Initialization
APBECipher will always operate with the underlying Cipher in a specific mode. For SafeNet ProtectToolkit-J,
the DESCipher will operate in CBCmode with PCKS5Padding. Thus, the only valid transformations that may
be passed to the Cipher.getInstance()method are PBEWithMD2AndDES, PBEWithMD5AndDES ,
PBEWithMD5AndCAST, PBEWithSHA1AndCAST, or PBEWithSHA1AndTripleDES.
This Cipher will only accept a SafeNet ProtectToolkit-J provider PBE key as the key parameter during
initialization. To create such a Key, use the PBESecretKeyFactory described below.
This Cipher also requires initialization with a valid PBEParameterSpec instance, (or an
AlgorithmParameters instance that can be converted to the generic form via the getParameterSpec()
method). This parameters instance is used to supply the salt and iteration count parameters to the PBECipher.
This is a required parameter, there are no defaults and so the Cipher.getParameters()method, this will
always return null.

PBEKey
The PBECipher instances require initialization with a SafeNet ProtectToolkit-J provider PBE key. Instances of
this type may be created using the PBESecretKeyFactory. The PBESecretKeyFactory is used to construct
SafeNet ProtectToolkit-J keys from their provider-independent form. The provider independent form of the
PBE key is the javax.crypto.spec.PBEKeySpec class.
For example, to create the provider based key from its provider independent form:
PBEKeySpec pbeKS = new PBEKeySpec(“password”.toCharArray())
SecretKeyFactory pbeKF = SecretKeyFactory.getInstance(“PBE”,

“SAFENET”);
Key key = pbeKF.generateSecret(pbeKS);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 61

Chapter 4: Supported Ciphers

The SafeNet ProtectToolkit-J PBE key will return the string “PBE” as its algorithm name, “RAW” as its
encoding. However, this key class does not support encoding and so will return null from the getEncoded()
method.

PBEExample Code
The following example code will create a PBE key with the string “password”, convert this into a SafeNet
ProtectToolkit-J PBE key, then create a PBE cipher. Next it initializes the cipher for encryption using the newly-
created key and the PBE parameters with a salt of “salt” and an iteration count of 5. Finally we encrypt the
string "hello world".
To perform the decryption, we simply re-initialize the cipher in decrypt mode, with the same key and
parameters.
PBEKeySpec pbeKS = new PBEKeySpec(“password”.toCharArray())
SecretKeyFactory pbeKF = SecretKeyFactory.getInstance(“PBE”,

“SAFENET”);
Key pbeKey = pbeKF.generateSecret(pbeKS);
PBEParameterSpec pbeParams =

new PBEParameterSpec(“salt”.getBytes, 5);
Cipher pbeCipher = Cipher.getInstance(“PBEWithMD5andDES”,

“SAFENET”);
pbeCipher.init(Cipher.ENCRYPT_MODE, pbeKey, pbeParams);
byte[] cipherText = pbeCipher.doFinal(

“hello world”.getBytes());
pbeCipher.init(Cipher.DECRYPT_MODE, pbeKey, pbeParams);
byte[] plainText = pbeCipher.doFinal(cipherText);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 62

Chapter 4: Supported Ciphers

RSA
This algorithm is a block cipher with a variable-length key, whose block size is equal to the key size. RSA is
patented in the United States by RSAData Security. The RSA cipher will operate in one of five modes,
depending on the padding requested. If “PKCS1Padding” is requested, the processing is performed as
described in PKCS#1. If “NoPadding” is requested, the processing is performed as specified in X.509 for raw
RSA.

NOTE Currently the RSACipher only supports encryption or decryption of a single block.
Any attempt to pass more data than a single block will result in a RuntimeException.

RSACipher Initialization
This cipher supports both only ECBmode, and may be used with NoPadding or PKCS1Padding. To create
an instance of this class, use the Cipher.getInstance()method with “SAFENET” as the provider and one of
the following strings as the transformation:

> RSA

> RSA/ECB/NoPadding

> RSA/ECB/PKCS1Padding

> RSA/ECB/OAEP

> RSA/ECB/OAEPPadding

Using the “RSA” transformation, the Cipher will default to ECB and PKCS1Padding. The NoPadding option
will result in “RAW” RSA, where each block will be 0 padded.

The block size of this cipher is dependent on the key size in use. The block size is equal to the number of bytes
of the RSAmodulus. If the modulus is k bytes long, then the encrypted output size is always k. For the
“NoPadding” mode, the plaintext input must be equal to or less than k; with the “PKCS1Padding” mode, the
plaintext input must be equal to or less than k-11 bytes.

This Cipher will only accept a SafeNet ProtectToolkit-J provider-based key during initialization. This key must
be generated by the SafeNet ProtectToolkit-J RSAKeyFactory,KeyPairGenerator or KeyStore.
This Cipher does not support initialization with algorithm parameters, and so the Cipher.getParameters()
method will always return null.

RSAKey
The RSACipher requires either a SafeNet ProtectToolkit-J RSA public or private Key during initialization. The
RSA key may be any length between 512 and 4096 bits (inclusive).

A new SafeNet ProtectToolkit-J RSA key can be generated randomly using the KeyPairGenerator as
described in section "Public Keys" on page 79, or a provider-independent form as described in section "Key
Specifications" on page 84. The RSA key may also be stored in the SafeNet ProtectToolkit-JKeyStore, as
described in "Key Storage" on page 82 .

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 63

Chapter 4: Supported Ciphers

The SafeNet ProtectToolkit-J RSA key will return the string “RSA” as its algorithm name, the public key type will
return “X.509” as its encoding (the private key types will return “RAW”) as its encoding. However, since the key
is stored within the hardware, the actual key encoding may not be available (private keys will return null from
the getEncoded()method). If the public key is available, the getEncoded()method will return the key as a
DER-encoded X.509 SubjectPublicKeyInfo block containing the public key as defined in PKCS#1.
The key value can only be extracted from a key if the associated Cryptoki key is not marked as Sensitive. The
keys generated in SafeNet ProtectToolkit-J will always be marked as sensitive. It is possible, however, to
access any Cryptoki keys stored on the device, and it is possible that the attributes of these keys have been
modified.

RSAKeyPairGenerator
The RSAKeyPairGenerator is used to generate random RSA key pairs. The generated key pair will consist of
two hardware keys, the public key and a private key with the Cryptoki CKA_SENSITIVE attribute set. The
public exponent for this key generator is fixed to the Fermat-4 value (hex 0x100001).

During initialization, the strength parameter may be any length from 512 to 4096. The default key size is 1024
bits. The random parameter is ignored as the hardware includes a cryptographically-secure random source.

Keys generated using the KeyPairGenerator are not thread-safe. That is, a SafeNet ProtectToolkit-J Key
instance may only be used by a single Cipher instance (as well as a single MAC instance) at any given time.
See"KeyGeneration" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.

RSAKeyFactory
The RSAKeyFactory is used to construct SafeNet ProtectToolkit-J keys from their provider-independent
form. There are three standard provider-independent forms for RSA keys, one for public keys, and two for
private keys. They are:

> java.security.spec.RSAPublicKeySpec

> java.security.spec.RSAPrivateKeySpec

> java.security.spec.RSAPrivateCrtKeySpec

Additionally, there is the au.com.safenet.crypto.spec.AsciiEncodedKeySpec class which can be used for
keys encoded as hexadecimal strings. For more information on thisKeySpec, see "Key Specifications" on
page 84.

Keys generated using the KeyFactory are not thread-safe. That is, a SafeNet ProtectToolkit-J Key instance
may only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.

To convert one of these supported KeySpec classes into a SafeNet ProtectToolkit-J provider key:
KeyFactory rsaKeyFact = KeyFactory.getInstance(“RSA”,

“SAFENET”);
PublicKey pubKey = rsaKeyFact.generatePublic(pubKeySpec);
PrivateKey privKey = rsaKeyFact.generatePrivate(privKeySpec);

The RSAKeyFactory cannot currently convert SafeNet ProtectToolkit-J keys into their provider-independent
format, so the getKeySpec()method will throw an InvalidKeySpecException. The class also cannot
perform any key translation via the translateKey()method.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 64

Chapter 4: Supported Ciphers

RSAExample Code
The following example code will create a random RSA key pair, then create a RSA cipher in ECBmode with
PKCS1Padding. Next it initializes the cipher for encryption using the public key from a newly-created key pair.
Finally, we encrypt the string "hello world".
To perform the decryption, we re-initialize the cipher in decrypt mode, with the private key from the key pair.
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA",

"SAFENET");
KeyPair rsaPair = keyGen.generateKeyPair();
Cipher rsaCipher = Cipher.getInstance("RSA/ECB/PKCS1Padding",

"SAFENET");
rsaCipher.init(Cipher.ENCRYPT_MODE, rsaPair.getPublic());
byte[] cipherText = rsaCipher.doFinal(

"hello world".getBytes());
rsaCipher.init(Cipher.DECRYPT_MODE, rsaPair.getPrivate());
byte[] plainText = rsaCipher.doFinal(cipherText);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 65

CHAPTER 5: Supported Signature
Algorithms

The following Signature algorithms are available with the Provider through the java.security.Signature
interface:

> "MD2withRSA" below

> "MD5withRSA" on the next page

> "SHA1withRSA" on the next page

> "SHA224withRSA" on the next page

> "SHA256withRSA" on the next page

> "SHA384withRSA" on page 68

> "SHA512withRSA" on page 68

> "SHA1withDSA" on page 68

> "PKCS#1RSA" on page 70

> "X.509RSA" on page 70

> "DSARaw" on page 70

> "RIPEMD128withRSA" on page 70

> "RIPEMD160withRSA" on page 70

MD2withRSA
This Signature class implements the algorithm “MD2withRSA” as defined in PKCS#1. This algorithm will
perform a message digest of the data to be signed, encode that information in a X.509 DigestInfo block, and
then RSA encrypt the DER-encoded block.

Initialization requires a SafeNet ProtectToolkit-J RSA key, either a private key for signing or a public key for
signature verification. See the RSACipher ("RSA" on page 63) for information on RSA keys.

This algorithm is provided for compatibility only; newer applications should use eitherMD5withRSA or
SHA1withRSA.
The following example will sign the message “hello world” with a pre-existing RSA private key, and then verify
it with the corresponding public key.
KeyPair rsaPair; // pre existing key pair
Signature rsaSig = Signature.getInstance(“MD2withRSA”, “SAFENET”);
rsaSig.initSign(rsaPair.getPrivate());
rsaSig.update(“hello world”.getBytes());
byte[] sig = rsaSig.sign();
rsaSig.initVerify(rsaPair.getPublic());
rsaSig.update(“hello world”.getBytes());
if (rsaSig.verify(sig)) {

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 66

Chapter 5: Supported Signature Algorithms

System.out.println(“Signature okay”);
}
else {

System.out.println(“Signature fails verification”);
}

MD5withRSA
This Signature class implements the algorithm “MD5withRSA”, as defined in PKCS#1. This algorithm will
perform a message digest of the data to be signed, encode that information in a X.509 DigestInfo block, and
then RSA encrypt the DER-encoded block.

Initialization requires a SafeNet ProtectToolkit-J RSA key, either a private key for signing or a public key for
signature verification. See the RSACipher ("RSA" on page 63) for information on RSA keys.

See "MD2withRSA" on the previous page for a simple example on using this algorithm; modify the algorithm
name used to “MD5withRSA”.

SHA1withRSA
This Signature class implements the algorithm “RSASSA-PKCS1-v1_5”, as defined in PKCS#1. This
algorithm will perform a message digest of the data to be signed, encode that information in a X.509 DigestInfo
block and then finally RSA encrypt the DER-encoded block.

Initialization requires a SafeNet ProtectToolkit-J RSA key, either a private key for signing or a public key for
signature verification. See the RSACipher ("RSA" on page 63) for information on RSA keys.

See "MD2withRSA" on the previous page for a simple example on using this algorithm; modify the algorithm
name used to “SHA1withRSA”.

SHA224withRSA
This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of 224
bits.

See "MD2withRSA" on the previous page for a simple example on using this algorithm; modify the algorithm
name used to “SHA224withRSA”.

SHA256withRSA
This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of 256
bits.

See "MD2withRSA" on the previous page for a simple example on using this algorithm; simply modify the
algorithm name used to “SHA256withRSA”.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 67

Chapter 5: Supported Signature Algorithms

SHA384withRSA
This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of 384
bits.

See "MD2withRSA" on page 66 for a simple example on using this algorithm; simply modify the algorithm
name used to “SHA384withRSA”.

SHA512withRSA
This signature class is similar to SHA1withRSA, except it produces a signature from a digest length of 512
bits.

See "MD2withRSA" on page 66 for a simple example on using this algorithm; simply modify the algorithm
name used to “SHA512withRSA”.

SHA1withDSA
This Signature class implements the Digital Signature Algorithm (DSA) as defined in FIPS PUB 186, which is
also compatible with the Sun-provided Signature algorithm of the same name. This algorithm will perform a
message digest (using SHA1) of the data to be signed, and then sign that data using DSA. The result of a sign
operation using this algorithm will be a DER-encoded block containing a sequence of the two integer values r
and s.

Initialization requires a SafeNet ProtectToolkit-J DSA key, either a private key for signing or a public key for
signature verification. The section "DSA Key" below describes how to generate SafeNet ProtectToolkit-J
provider DSA keys.

DSA Key
The DSASignature requires a SafeNet ProtectToolkit-J DSA public or private Key during initialization. The DSA
key may be any length between 512 and 4096 bits (inclusive).

A new SafeNet ProtectToolkit-J DSA key pair can be generated randomly using the KeyPairGenerator, as
described in "KeyGeneration" on page 78, or, a provider-independent form. The AES key may also be stored
in the SafeNet ProtectToolkit-JKeyStore as described in "Key Storage" on page 82.
The SafeNet ProtectToolkit-J DSA public and private keys will return the string “DSA” as the algorithm name,
“RAW” as the encoding type and null for the encoding.

DSAKeyGenerator
The DSAKeyPairGenerator is used to generate random DSA key pairs. The generated key pair will consist of
two hardware keys: the public key and a private key with the Cryptoki CKA_SENSITIVE attribute set. Each
key will also share the same set of DSA parameters.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 68

Chapter 5: Supported Signature Algorithms

During initialization, the strength parameter may be either 512 or 4096. The default key size is 1024 bits. The
random parameter is ignored as the hardware includes a cryptographically-secure random source. Any
provided AlgorithmParameterSpec parameters will also be ignored (this precludes generation of keys with
non-default parameters). The DSA parameters used for the 512 and 1024 bit keys are as specified in the Java
Cryptography Architecture Specification.

Keys generated using the KeyGenerator are not thread-safe. That is, a SafeNet ProtectToolkit-J Key instance
may only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.
The following example will generate a new random 1024 bit key pair:
KeyPairGenerator keyGen = KeyPairGenerator.getInstance(

“DSA”, “SAFENET”);
KeyPair dsaPair = keyGen.generateKeyPair();

DSAKeyFactory
The DSAKeyFactory is used to construct SafeNet ProtectToolkit-J keys from their provider-independent
form. There are two standard provider-independent forms for DSA keys: one for public keys and one for private
keys. They are java.security.spec.DSAPublicKeySpec, and java.security.spec.DSAPrivateKeySpec.
Keys generated using the KeyFactory are not thread-safe. That is, a SafeNet ProtectToolkit-J Key instance
may only be used by a single Cipher instance (as well as a single MAC instance) at any given time. See"Key
Generation" on page 78 for information on threading and SafeNet ProtectToolkit-J keys.

To convert one of these supported KeySpec classes into a SafeNet ProtectToolkit-J provider key:
KeyFactory dsaKeyFact = KeyFactory.getInstance(“DSA”,

“SAFENET”);
PublicKey pubKey = dsaKeyFact.generatePublic(pubKeySpec);
PrivateKey privKey = dsaKeyFact.generatePrivate(privKeySpec);

The DSAKeyFactory cannot currently convert SafeNet ProtectToolkit-J keys into their provider independent
format so the getKeySpec()method will throw an InvalidKeySpecException. The class also cannot perform
any key translation via the translateKey()method.

DSAExample Code
The following example code will create a random DSA key pair, then create a DSASignature. We will then use
this instance to sign the message “hello world” and verify that signature using the public key.
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA",

"SAFENET");
KeyPair rsaPair = keyGen.generateKeyPair();
Signature dsaSig = Signature.getInstance("DSA",

"SAFENET");
dsaSig.initSign(dsaPair.getPrivate());
dsaSig.update(“hello world”.getBytes());
byte[] sig = dsaSig.sign();
dsaSig.initVerify(dsaPair.getPublic();
dsaSig.update(“hello world”.getBytes());
if (dsaSig.verify()) {

System.out.println(“Signature okay”);
}
else {

System.out.println(“Signature fails verification”);
}

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 69

Chapter 5: Supported Signature Algorithms

PKCS#1RSA
This signature algorithm will produce a PKCS#1 encoded block (block type 01) containing the private-key
encrypted message. The message length must be k-11 bytes long, where k is the length of the RSAmodulus.
The generated signature will be k bytes long.

X.509RSA
This signature algorithm will perform "raw" RSA exponentiation on the input message by converting it to an
integer (most-significant byte first) and converting the result to a byte string (most-significant byte first). The
input message, considered as an integer, must be less than the modulus. Where necessary, the input
message is padded by prepending the message with 0-valued bytes.

This algorithm is intended for compatibility with applications that do not follow the PKCS#1 block format.

DSARaw
This signature algorithm will perform "raw" DSA exponentiation on the input message by converting it to an
integer (most-significant byte first) and converting the result to a byte string (most-significant byte first). The
input message, considered as an integer, must be less than the modulus. Where necessary, the input
message is padded by prepending the message with 0-valued bytes.

This algorithm is intended for compatibility with applications that do not follow the PKCS#1 block format.

RIPEMD160withRSA
This Signature class implements the algorithm “MD5withRSA”, as defined in PKCS#1, with the message
digest algorithm RIPEMD160 in place of MD5. This algorithm will perform a message digest of the data to be
signed, encode that information in a X.509 DigestInfo block and then RSA-encrypt the DER-encoded block.

Initialization requires a SafeNet ProtectToolkit-J RSA key, either a private key for signing or a public key for
signature verification. See the RSACipher ("RSA" on page 63) for information on RSA keys.

See "MD2withRSA" on page 66 for a simple example on using this algorithm; simply modify the algorithm
name used to “RIPEMD128withRSA”.

RIPEMD128withRSA
This Signature class implements the algorithm “MD5withRSA”, as defined in PKCS#1, with the message
digest algorithm RIPEMD128 in place of MD5. This algorithm will perform a message digest of the data to be
signed, encode that information in a X.509 DigestInfo block, and then RSA-encrypt the DER-encoded block.

Initialization requires a SafeNet ProtectToolkit-J RSA key, either a private key for signing or a public key for
signature verification. See the RSACipher ("RSA" on page 63) for information on RSA keys.

See"MD2withRSA" on page 66 for a simple example on using this algorithm; simply modify the algorithm
name used to “RIPEMD128withRSA”.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 70

CHAPTER 6: Supported MAC Algorithms

The following MAC algorithms are available with the Provider through the javax.crypto.Mac interface:
> "DESMAC" below

> "DESedeMAC" below

> "DESedeX919MAC" below

> "IDEA MAC" on the next page

> "CAST128MAC" on the next page

> "RC2" on the next page

> "HMAC/MD2" on the next page

> "HMAC/MD5" on the next page

> "HMAC/SHA1" on the next page

> "HMAC/SHA224" on page 73

> "HMAC/SHA256" on page 73

> "HMAC/SHA384" on page 73

> "HMAC/SHA512" on page 73
A sample code fragment for generating a MAC code is provided here:

> "SampleMAC Code" on page 73

DESMAC
This algorithm is compatible with FIPS PUB 113 as well as ANSI X9.9.

The MACmay be initialized using any valid DES key (see "DES" on page 44). The result MAC value will be a 4-
byte array.

DESedeMAC
This algorithm is compatible with FIPS PUB 113.

The MACmay be initialized using any valid DESede key (see "DESede" on page 47). The result MAC value will
be a 4-byte array.

DESedeX919MAC
This MAC implements the triple DESMAC algorithm as defined in X9.19 (or ISO 9807).

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 71

Chapter 6: Supported MAC Algorithms

The MACmay be initialized using any valid DESede key (see "DESede" on page 47). The result MAC value will
be a 4-byte array.

IDEAMAC
This algorithm is compatible with FIPS PUB 113.

The MACmay be initialized using any valid IDEA key (see "IDEA" on page 52). The result MAC value will be a
4-byte array.

CAST128MAC
This algorithm is compatible with FIPS PUB 113.

The MACmay be initialized using any valid CAST128 key (see "CAST128" on page 54). The result MAC value
will be a 4-byte array.

RC2
This algorithm is compatible with FIPS PUB 113.

The MACmay be initialized using any valid RC2 key (see "RC2" on page 56). The result MAC value will be a 4-
byte array.

HMAC/MD2
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function MD2.
The result MAC value will be a 16-byte array.

The MACmay be initialized using a SecretKeySpecwith the algorithm name “HMAC/MD2”. It is also possible
to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 42.

HMAC/MD5
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function MD5.
The result MAC value will be a 16-byte array.

The MACmay be initialized using a SecretKeySpecwith the algorithm name “HMAC/MD5”. It is also possible
to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 42.

HMAC/SHA1
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function SHA1.
The result MAC value will be a 20-byte array.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 72

Chapter 6: Supported MAC Algorithms

The MACmay be initialized using a SecretKeySpecwith the algorithm name “HMAC/SHA1”. It is also possible
to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 42.

HMAC/SHA224
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function
SHA224. The result MAC value will be a 28-byte array.

The MACmay be initialized using a SecretKeySpecwith the algorithm name “HMAC/SHA224”. It is also
possible to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 42.

HMAC/SHA256
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function
SHA256. The result MAC value will be a 32-byte array.

The MACmay be initialized using a SecretKeySpecwith the algorithm name “HMAC/SHA256”. It is also
possible to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 42.

HMAC/SHA384
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function
SHA384. The result MAC value will be a 48-byte array.

The MACmay be initialized using a SecretKeySpecwith the algorithm name “HMAC/SHA384”. It is also
possible to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 42.

HMAC/SHA512
This HMAC implements the HMAC algorithm as defined in RFC 2104 using the message digest function
SHA512. The result MAC value will be a 64-byte array.

The MACmay be initialized using a SecretKeySpecwith the algorithm name “HMAC/SHA512”. It is also
possible to initialize this MAC using any of the secret keys generated by one of the KeyGenerator classes or
KeyFactory classes, as detailed in "Supported Ciphers" on page 42.

SampleMACCode
This sample code fragment will generate a MAC code (based on a randomly generated DES key) for the bytes
in the string "hello world".
KeyGenerator keyGen = KeyGenerator.getInstance("DES", "SAFENET");
Key desKey = keyGen.generateKey();

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 73

Chapter 6: Supported MAC Algorithms

Mac desMac = Mac.getInstance("DES", "SAFENET");
desMac.init(desKey);
byte[] mac = desMac.doFinal("hello world".getBytes());

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 74

CHAPTER 7: Supported Message Digest
Algorithms

The following standard message digest algorithms are supported by the Provider through the
java.security.MessageDigest interface:

Message Digest Name Digest Length (bits)

"MD2" below 128

"MD5" below 128

"SHA-1" on the next page 160

"SHA-224" on the next page 224

"SHA-256" on the next page 256

"SHA-384" on the next page 384

"SHA-512" on the next page 512

"RIPEMD128" on page 77 128

"RIPEMD160" on page 77 160

MD2
This message digest algorithm produces a 128-bit digest. The algorithm is described in RFC-1319. This
algorithm is provided for compatibility only and is not recommended for other purposes. Instances of this
algorithm cannot be cloned.

To create a MD2 message digest for the message “hello world”:
MessageDigest md2 = MessageDigest.getInstance(“MD2”, “SAFENET”);
byte[] digest = md2.digest(“hello world”.getBytes());

MD5
This message digest algorithm produces a 128-bit digest. The algorithm is described in RFC-1321. This
algorithm is provided for compatibility only and is not recommended for other purposes. Instances of this
algorithm cannot be cloned.

To create a MD5 message digest for the message “hello world”:

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 75

Chapter 7: Supported Message Digest Algorithms

MessageDigest md5 = MessageDigest.getInstance(“MD5”, “SAFENET”);
byte[] digest = md5.digest(“hello world”.getBytes());

SHA-1
The SHA-1 message digest algorithm produces a 160-bit digest. The algorithm is described in FIPS PUB 180-
1. Instances of this algorithm cannot be cloned.

To create a SHA-1 message digest for the message “hello world”:
MessageDigest sha1 = MessageDigest.getInstance(“SHA-1”, “SAFENET”);
byte[] digest = sha1.digest(“hello world”.getBytes());

SHA-224
The SHA-224 message digest algorithm produces a 224-bit digest. The algorithm is described in FIPS PUB
180-1. Instances of this algorithm cannot be cloned.

To create a SHA-224 message digest for the message “hello world”:
MessageDigest sha256 = MessageDigest.getInstance(“SHA-224”, “SAFENET”);
byte[] digest = sha224.digest(“hello world”.getBytes());

SHA-256
The SHA-256 message digest algorithm produces a 256-bit digest. The algorithm is described in FIPS PUB
180-1. Instances of this algorithm cannot be cloned.

To create a SHA-256 message digest for the message “hello world”:
MessageDigest sha256 = MessageDigest.getInstance(“SHA-256”, “SAFENET”);
byte[] digest = sha256.digest(“hello world”.getBytes());

SHA-384
The SHA-384 message digest algorithm produces a 384-bit digest. The algorithm is described in FIPS PUB
180-1. Instances of this algorithm cannot be cloned.

To create a SHA-384 message digest for the message “hello world”:
MessageDigest sha384 = MessageDigest.getInstance(“SHA-384”, “SAFENET”);
byte[] digest = sha384.digest(“hello world”.getBytes());

SHA-512
The SHA-512 message digest algorithm produces a 512-bit digest. The algorithm is described in FIPS PUB
180-1. Instances of this algorithm cannot be cloned.

To create a SHA-512 message digest for the message “hello world”:
MessageDigest sha512 = MessageDigest.getInstance(“SHA-512”, “SAFENET”);
byte[] digest = sha512.digest(“hello world”.getBytes());

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 76

Chapter 7: Supported Message Digest Algorithms

RIPEMD160
The RIPEMD160 message digest algorithm produces a 160-bit digest. Instances of this algorithm cannot be
cloned.

To create a RIPEMD160 message digest for the message “hello world”:
MessageDigest rmd160 = MessageDigest.getInstance(“RIPEMD160”,
“SAFENET”);
byte[] digest = rmd160.digest(“hello world”.getBytes());

RIPEMD128
The RIPEMD128 message digest algorithm produces a 128-bit digest. Instances of this algorithm cannot be
cloned.

To create a RIPEMD128 message digest for the message “hello world”:
MessageDigest rmd128 = MessageDigest.getInstance(“RIPEMD128”,
“SAFENET”);
byte[] digest = rmd128.digest(“hello world”.getBytes());

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 77

CHAPTER 8: Key Generation

SafeNet ProtectToolkit-J can generate random keys for each of the cipher algorithms it supports. These keys
are Cryptoki session keys; they are not stored permanently on the adapter. Session keys are not thread-safe
and so may only be used by a single Cipher instance and a single Signature (or MAC) instance at any time.
Thus, it is allowable to use a DES key for encryption in a Cipher instance and a single MAC instance but not two
Cipher instances. Keys fetched from the SafeNet ProtectToolkit-JKeyStore do not have this restriction.
When generating a random key, the size of the key will be as follows:

Key Name Default Key Size Valid Key Sizes

DES 56 56

DESede 196 128,196

AES 128 128,196, 256

IDEA 128 128

CAST128 128 8-128

RC2 64 0-1024

RC4 64 8-2048

RSA 1024 512-4096

DSA 1024 512-3072

DH 1024 512-4096

This section describes the following:

> "Secret Keys" below

> "Public Keys" on the next page

Secret Keys
The secret key Ciphers will simply generate the appropriate number of random bytes for the key (there are no
checks for weak keys).

The following example will generate a random double-length DESede key. Generation of a key for a different
algorithm is as simple as changing the algorithm name and choosing an appropriate key length.
KeyGenerator keyGen = KeyGenerator.getInstance(“DESede”, “SAFENET”);
keyGen.init(128);
SecretKey key = keyGen.generateKey();

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 78

Chapter 8: Key Generation

Public Keys

RSAKeys
The RSA key pair generator will generate keys based on an algorithm determined by key size. If the size is
some multiple of 256 bits greater than 1024, the algorithm specified in ANSI X 9.31 will be used. Otherwise, the
one specified in PKCS#1 is used. The key pair will be compatible with PKCS#1 RSA, ISO/IEC 9796 RSA and
X.509 (raw) RSA standards. ANSI X 9.31 keys have a random 16-bit exponent, while PKCS#1 public exponent
is fixed to the Fermat-4 value (hex 0x1001).

The following example will generate a 2048-bit RSA key pair.
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“RSA”,

“SAFENET”);
keyPairGen.initialise(2048);
KeyPair keyPair = keyPairGen.generateKeyPair();

DSAKeys
The DSA key pair generator will generate keys based on the algorithm specified in the Digital Signature
Standard (FIPS PUB 186-1). DSA key generation requires a number of parameters; these are generally fixed
in a given application, but they are also usually randomly generated for a particular application. At present,
SafeNet ProtectToolkit-J does not include any mechanism to generate these parameters. However, the DSA
key pair generator can accept these parameters (via a java.security.spec.DSAParameterSpec) or has
configured defaults for 512- or 1024-bit keys (these defaults are listed in the JCE specification).

The following example will generate a 1024-bit DSA key pair, using the default DSA parameters.
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DSA”,

“SAFENET”);
keyPairGen.initialise(1024);
KeyPair keyPair = keyPairGen.generateKeyPair();
This example will use the provided DSA parameters, rather than the built-in defaults.
BigInteger p, q, g; // These are the parameter values
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DSA”,

“SAFENET”);
DSAParameterSpec keyParamSpec = new DSAParamterSpec(p, q, g);
keyPairGen.initialise(keyParamSpec);
KeyPair keyPair = keyPairGen.generateKeyPair();

Diffie-Hellman Keys
The DHKeyPairGenerator will generate Diffie-Hellman keys suitable for the Diffie-Hellman key agreement
protocol. Diffie-Hellman key generation requires a number of parameters; these are generally fixed in a given
application, but they are also usually randomly generated for a particular application. At present, SafeNet
ProtectToolkit-J does not include any mechanism to generate these parameters. However, the DH key pair
generator can accept these parameters (via a java.security.spec.DHParameterSpec) or has configured
defaults for 512- or 1024-bit keys (these defaults are listed in the JCE specification).

The following example will generate a 1024-bit DH key pair, using the default DH parameters.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 79

Chapter 8: Key Generation

KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DH”,
“SAFENET”);

keyPairGen.initialise(1024);
KeyPair keyPair = keyPairGen.generateKeyPair();
This example will use the provided DH parameters, rather than the built-in defaults.
BigInteger p, g; // These are the parameter values
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance(“DH”,

“SAFENET”);
DSAParameterSpec keyParamSpec = new DHParamterSpec(p, g);
keyPairGen.initialise(keyParamSpec);
KeyPair keyPair = keyPairGen.generateKeyPair();

KeyAgreement Protocols
SafeNet ProtectToolkit-J also includes mechanisms which allow for the creation of keys based on other keys.

Diffie-Hellman KeyAgreement
The DHKeyAgreement algorithm can be used to perform a 2-phase key Diffie-Hellman key agreement.

Xor Key Derive
This algorithm may be used to derive a new key from an existing key and a known data pattern. The key value
and the data pattern will be combined on the adapter using the XOR function. For example if the initial key has
the value 0x12,0x34 and the data pattern has the value 0x89,0xAB, the resultant key will have the value
0x88,0x88.

The actual key values will be combined within the adapter to ensure their values are never compromised. Also,
the newly-created key will inherit the attributes of the two keys such that the derived key will be as protected as
the two original keys. This mechanism may not be used to change the key type of the base key. Therefore, if
the base key is a DES key, the derived key must also be a DES key.

This mechanism can only be used on keys with the CKA_DERIVE attribute set to true. This will the case for
keys generated with any of the SafeNet ProtectToolkit-J mechanisms (such asKeyGenerator classes).
However, if the key is generated with the Browser application, be sure to check the ‘Derive’ checkbox.
Do not create an instance of this class directly, rather use the KeyAgreement.getInstance() factory method:
KeyAgreement ka = KeyAgreement.getInstance("XorBaseAndKey", "SAFENET");

Once created, the instance should be initialized using the base key. Then, to combine with the data pattern, call
the doPhase()method with a SecretKeySpec instance created with the data pattern and true for the
lastPhase parameter.
Finally to obtain the newly created instance call the generateSecret()method with the appropriate key name.
For example:
byte[] data = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
ka.init(baseKey);
ka.doPhase(new SecretKeySpec(data), true);
Key newKey = ka.generateSecret("DES");

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 80

Chapter 8: Key Generation

NOTE The key material generated must be compatible with the key type requested in the
generateSecret()method call. Specifically, the length of the new key will be the minimum of
the lengths of the two components.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 81

CHAPTER 9: Key Management

This section provides information on the following:

> "Key Storage" below

> "KeyWrapping" on the next page

> "Key Specifications" on page 84

Key Storage
The encryption adapter has the facility to store public, private, and secret keys. These keys will be stored in the
non-volatile storage on the card. As well as key storage, it is also possible to store X.509 Certificates (which
contain a public key). SafeNet ProtectToolkit-J provides access to this storage mechanism via the JCE
KeyStore API. The JCE name for this KeyStore is CRYPTOKI.

The JCEKeyStore API allows storage of a Key and an associated alias. This alias is simply a unique string
which may be used to access the key. To store a key in the key store, use the setKeyEntry(). To retrieve a
key, use the getKey(). Keys may be removed from the KeyStore using the deleteEntry()method.
Currently, only two types of keys may be stored in the SafeNet ProtectToolkit-J KeyStore: either SafeNet
ProtectToolkit-J keys or javax.crypto.spec.SecretKeySpec keys. Other key types must be converted to their
SafeNet ProtectToolkit-J equivalents before storage.

Currently, the Certificate support is based on Sun’s Certificate implementation which is only available on the
Sun Java2 JVM.

Per Key password protection is not supported, so a null password may be supplied to the methods used to
store and retrieve keys from the KeyStore. The password provided to the load()method will be used to log in to
the token, and so to access private objects on the token it is necessary to provide the PIN. If a PIN is not
supplied, all objects will be stored as public objects. When a PIN is supplied, only PublicKey and Certificate
objects will be stored as public objects; all others will be private. In either case, the InputStream passed to the
store() and load()methods will not change the contents of the key store.
Keys stored in the KeyStore are the only thread-safe SafeNet ProtectToolkit-J keys. A key instance obtained
from the KeyStore.getKeyEntry()method will return a key that may be used in multiple Cipher, MAC, and
Signature instances.

The following example will create a new random DES key, and then store that key in the KeyStore. Note that
even though we first create the key and then store it, the actual key value will not leave the hardware and
therefore remains secure.
KeyGenerator keyGen = KeyGenerator.getInstance(“DES”, “SAFENET”);
Key key = keyGen.generateKey();
KeyStore keyStore = KeyStore.getInstance(“CRYPTOKI”, “SAFENET”);
keyStore.load(null, null);
keyStore.setKeyEntry(“des key”, key, null, null);
The following example can be used to access the previously stored key:

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 82

Chapter 9: Key Management

KeyStore keyStore = KeyStore.getInstance(“CRYPTOKI”, “SAFENET”);
keyStore.load(null, null);
Key key = keyStore.getKey(“des key”, null);

KeyWrapping
The CRYPTOKI KeyStore also provides a key wrapping mechanism. Key wrapping is a technique where one
key value is encrypted using another key. With SafeNet ProtectToolkit-J, since the key values are stored
securely on the hardware, we can use this technique to encrypt the key on the hardware and then extract the
encrypted key.

For example, using this mechanism, a session key may be generated on the hardware and then exported from
the hardware in an encrypted (wrapped) form. The key will generally be encrypted using a Public/Private key
encryption cipher and can then be safely exported from the HSM. It is also possible to use secret keys for key
wrapping. In this case, however, the same secret key must exist on both the source (performing the wrapping
function) and the destination adapters.

The WrappingKeyStore API is an extension to the standard JCE that is used to provide access to key wrapping
services. This class is identical to the standard KeyStore API, except that it provideswrapKey() and
unwrapKey()methods. The wrapping key store can be instantiated using the following code:
import au.com. safenet.crypto.WrappingKeyStore;

...

WrappingKeyStore wks = WrappingKeyStore.getInstance("CRYPTOKI",
"SAFENET");

...

ThewrapKey()method has the following signature:
public byte[] wrapKey(Key wrapKey, String transformation, Key key)
throws GeneralSecurityException
The wrapKey parameter specifies the Key used to encrypt the key parameter. The transformation parameter
specifies the encryption transformation that is to be used to encrypt the key. With the CRYPTOKI KeyStore, you
can transform the following:

> RSA/ECB/PKCS1Padding

> RSA/ECB/NoPadding

> DES/ECB/NoPadding

> DES/ECB/PKCS5Padding

> DESede/ECB/NoPadding

> DESede/ECB/PKCS5Padding

> IDEA/ECB/NoPadding

> IDEA/ECB/PKCS5Padding

> CAST128/ECB/NoPadding

> CAST128/ECB/PKCS5Padding

> RC2/ECB/NoPadding

> RC2/ECB/PKCS5Padding

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 83

Chapter 9: Key Management

> RC4

AGeneralSecurityException will be thrown if the transformation parameter is invalid.

The value returned is a byte array containing the encrypted key. This value may be passed to the unwrapKey
()method to extract the original key. The unwrapKey()method has the following signature:
public Key unwrapKey(Key unwrapKey, String transformation,

byte[] wrappedKey, String keyAlgorithm)
throws GeneralSecurityException
This method will "unwrap" or decrypt the encrypted key using the provided decryption key and transformation.
The Key returned will be of the type specified by the keyAlgorithm parameter. This parameter must match the
actual key type that was originally wrapped.

The unwrapKey parameter should be either the same secret key as was used to wrap the key, or the private
key corresponding to the public key used to wrap the key. The transformation parameter specifies the
decryption transformation used to decrypt the key. This value should be the same as that used to wrap the key.
The wrappedKey parameter should contain the encrypted key. The keyAlgorithm should specify the algorithm
that the decrypted key is for.

AGeneralSecurityException will be thrown if the transformation parameter is invalid.

The following example will create a new random RC4 key, wrap that key with an RSA public key, and unwrap it
with the associated RSA private key.
KeyGenerator keyGen = KeyGenerator.getInstance(“RC4”, “SAFENET”);
Key rc4Key = keyGen.generateKey();
WrappingKeyStore wks = WrappingKeyStore.getInstance(“CRYPTOKI”);
wks.load(null, null); // initialise the KeyStore
Key publicKey = wks.getKey(“RSA_pub”, null);
byte[] encKey = Wks.wrapKey(publicKey,“RSA/ECB/PKCS1Padding”,rc4Key);
// give the encrypted key to the recipient, and unwrap it
Key privateKey = wks.getKey(“RSA_priv”, null);
Key recoveredKey = wks.unwrapKey(privateKey, “RSA/ECB/PKCS1Padding’,

encKey);

Key Specifications
As well as supporting the relevant JCA/JCE defined KeySpec classes, SafeNet ProtectToolkit-J includes a
number of custom provider-independent key classes for use with its KeyFactory classes. These classes all live
in the au.com.safenet.crypto.spec package:

AsciiEncodedKeySpec
Used to encode RSA, DSA or Diffie-Hellman public and private keys as ASCII strings. These strings contain the
key's integer components as hexadecimal strings separated by a full stop. For example, an RSA private key:
public_exponent.modulus.private_exponent.p.q

A public key will contain only the first two elements and a private key will contain all five. The RSAKeyFactory
can convert from this KeySpec into the provider-based key.

For DSA keys the format is:

y.p.q.g (private keys) x.p.q.g (public keys)

For Diffie-Hellman keys, the format is:

y.p.g (private keys) x.p.g (public keys)

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 84

Chapter 9: Key Management

CASTKeySpec
Used to encode keys for the CAST algorithm. This class takes a byte array, which it will use directly as the
CAST key. The array must be less than or equal to 16 bytes, the maximum key size for a CAST key.

IDEAKeySpec
Used to encode keys for the IDEA algorithm. This class takes a byte array and uses the first 16 bytes of the
array as the IDEA key.

RC2KeySpec
Used to encode keys for the RC2 algorithm. This class takes a byte array, which it will use directly as the RC2
key. The array must be less than or equal to 128 bytes, the maximum key size for a RC2 key.

RC4KeySpec
Used to encode keys for the RC4 algorithm. This class takes a byte array, which it will use directly as the RC4
key. The array must be less than or equal to 256 bytes, the maximum key size for a RC4 key.

AESKeySpec
Used to encode keys for the AES algorithm. This class takes a byte array, which it will use directly as the AES
key. The array must be 16, 24 or 32 bytes.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 85

CHAPTER 10: Best Practice Guidelines

The purpose of this section is to outline some of the best practices application developers can use when
developing their SafeNet ProtectToolkit-J based applications.

The following guidelines do not attempt to replace the vast body of literature regarding building secure systems
or implementing cryptography for security. Rather it focuses on some of the specific aspects of the SafeNet
ProtectToolkit-J product that are particularly relevant to building applications in a timely and reliable way.

SafeNet ProtectToolkit-J Provider
The SafeNet ProtectToolkit-J JCA/JCEProvider provides access to the many cryptographic features of the
SafeNet ProtectServer range of hardware.

As the provider is hardware-based, there are a number of differences between it and other software-based
implementations. Mostly, these stem from the different methods used to protect the key store, where hardware
can effectively provide some level of physical protection.

Key Protection

Usage
Each key has an associated set of usage flags that indicate which cryptographic operations may be performed
with the key. For example, specific flags may be set to enable encryption or signature generation. Keys in the
SafeNet ProtectToolkit-J provider will adhere to these rules.

Value
Normally, keys protected by the hardware will not allow their values to be revealed outside the adapter. Thus,
the Key.getEncoded() interface will generally return a null value.

General SafeNet ProtectToolkit-J UsageGuidelines
> Create persistent keys with the Key Management Utility (KMU) and specify their key usage attributes

appropriately.

• secret and private keys should always be sensitive

• each key should be usable for only one purpose

• use the KMU for key backups with the exportable attribute

> Persistent key instances from the SafeNet ProtectToolkit-J KeyStore implementation are shareable. This
means a key lookup only needs to be performed once, rather than every time a key is required.

> Initialize the token correctly. Different applications should use different tokens.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 86

Chapter 10: Best Practice Guidelines

> Install the SafeNet ProtectToolkit-J provider as the highest priority, or use Security.insertProvider
(SAFENETProvider() early on in your application. This will ensure that the SAFENET hardware
SecureRandom will become the system default, providing improved quality random data and avoiding the
startup performance penalty of the Sun implementation.

> Fully specify Cipher transformations. For example, use "DES/ECB/NoPadding" instead of "DES".

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 87

APPENDIX A: JCA/JCE API Tutorial

This appendix will introduce the reader to the Java API known as the Java Cryptography Extension (JCE)
through development of a simple application.

It is important to note that this tutorial does not provide complete coverage of this API. The API specification
documentation should serve as the detailed reference. It can be found here: http://docs.oracle.com/

During this tutorial we will develop a JCE-based application that allows for simple file encryption. This
application will allow the user to encrypt and decrypt files.

The files are encrypted using a combination of public-key and secret-key cryptography. The encrypted files
also include a Message Authentication Code (MAC) to ensure the integrity of their contents. Where possible,
the standard API mechanisms will be used to achieve the desired functionality.

The code fragments included in this document are used to highlight the important sections of the application.
The full source code for the application may be found in the Java source file FileCrypt.java.
This document contains the following chapters:

> "Public KeyCryptography" below

> "FileCrypt Application" below

• "File Encryption" on the next page

• "File Decryption" on page 93

• "Accessing Public Keys" on page 98

• "Main()" on page 98

Public Key Cryptography
The sample application will encrypt a document using a secret-key cipher algorithm, for example DES or RC4,
and a randomly generated key. This algorithm is known as the bulk cipher, as it is used to perform the bulk of
the encryption. The randomly generated key will be encrypted using a public-key cipher algorithm.

By combining public-key and secret-key encryption in this manner, we retain the advantages of public-key
cryptography (we don't have to share a secret key) and the performance advantage of a secret-key cipher.

It is assumed that two public key pairs have been generated for this application: the first for the document
sender and the second for the recipient.

FileCrypt Application
The FileCrypt application enables files to be encrypted for a given recipient and then decrypted by that
recipient. Since the encrypted file contains a MAC, the recipient of a document will also be able to verify that the
encrypted file was not tampered with.

These encrypted files will be stored in this custom format:

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 88

http://docs.oracle.com/

Appendix A: JCA/JCEAPI Tutorial

Field Length (bytes)

KeyLength 4

KeyBytes As specified by KeyLength

AlgParamsLength 4

AlgParams As specified by AlgParamsLength

MacLength 4

Mac As specified by MacLength

Encrypted Data Remainder of file

This section contains information on the following functions:

> "File Encryption" below

> "File Decryption" on page 93

> "Accessing Public Keys" on page 98

> "Main()" on page 98

File Encryption
In order to encrypt a file, we need to know the public key of its recipient - the party who can decrypt the file.
These arguments are passed to the encryptFile()method.
The encryptFile()method will:
1. generate a random session key,

2. encrypt the session key with the recipient's public key,
3. initialize the bulk cipher with the session key,
4. encode the bulk cipher's algorithm parameters,

5. initialize the MAC algorithm,

6. process the input file, and
7. create the output from the various components.

Step 1 - Generate a Random Session Key
To achieve acceptable performance during file encryption and decryption, we need to use a symmetric-key
cipher. This symmetric key, which we will call the session key, will be encrypted (using the recipient's public
key) and then stored with the encrypted file. Rather than simply using the same key for each file, we need to
generate a random key for each encryption.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 89

Appendix A: JCA/JCEAPI Tutorial

The KeyGeneratormechanism is used to create random SecretKey key objects. A provider-based instance
is created using the KeyGenerator.getInstance()method.
This instance can then be initialized using one of the KeyGenerator.init()methods. In the simplest case, no
initialization is required, in which case the provider's default initialization is used. Alternatively, initialization can
request a key of the given key size, or other key parameters by using a
java.security.AlgorithmParameterSpec class.
The following method will create a new random SecretKey for the given algorithm and provider using the
default initialization:
SecretKey generateSecretKey(String algorithm, String

provider)
{

KeyGenerator keyGen = KeyGenerator.getInstance(
algorithm, provider);

return keyGen.generateKey();
}

Step 2 - Encrypt the Session Key
Once we have generated the session key, we need to encrypt it using the recipient's public key. In this way we
can safely transmit the session key such that only the recipient can recover the actual key. The Thales
SAFENET provider includes a special interface to itsKeyStore to provide session key encryption.
The au.com.safenet.crypto.WrappingKeyStore class extends the standard KeyStoremechanism to
provide "key wrapping" which enables a session key to be generated in the hardware, then encrypted on the
hardware and exported in an encrypted form. This means that the session key is never visible outside the
hardware.

TheWrappingKeyStore.wrapKey()method accepts three arguments: two keys and a transformation string.
The first Key is the RSAPublicKey used to perform the encryption, the second Key is the DES key we wish to
encrypt. The final parameter, the transformation string, describes the encryption method that should be used
to encrypt the key. Currently, this string may be RSA/ECB/PKCS1Padding or RSA/ECB/NoPadding.
static final String PROVIDER = "SAFENET";
static final String WRAP_KEYSTORE = "CRYPTOKI";
static final String WRAP_TRANSFORM =

"RSA/ECB/PKCS1Padding";

byte[] encryptKey(PublicKey wrapKey, SecretKey key)
{

WrappingKeyStore keyStore;
keyStore = WrappingKeyStore.getInstance(WRAP_KEYSTORE,

PROVIDER);
keyStore.load(null, null);
return keyStore.wrapKey(wrapKey, WRAP_TRANSFORM, key);

}

Step 3 - Create and Initialize the Bulk Cipher
This application will simply use the defaultAlgorithmParameters for the bulk encryption algorithm.
Therefore, the initialization of our Cipher is quite simple:
static final String PROVIDER = "SAFENET";
static final String BULK_ALGORITHM = "DES";

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 90

Appendix A: JCA/JCEAPI Tutorial

Cipher bulkCipher = Cipher.getInstance(BULK_ALGORITHM,
PROVIDER);

bulkCipher.init(Cipher.ENCRYPT_MODE, secretKey);

Step 4 - Encode Algorithm Parameters
The only algorithm parameter supported by the Thales SAFENET provider is an initialization vector. An
initialization vector is used in a block cipher when it is operating in a feedback mode: DES in CBCmode for
example. During encryption, the initialization vector is used to prime the cipher. However, unlike the key, its
value is not secret.

The cipher used to decrypt the data stream must be initialized with the same initialization vector for the
decryption to succeed.

The following method will return the algorithm parameters encoded into a byte array. For now, we just return
the IV directly as this is the only supported algorithm parameter.
byte[] encodeParameters(Cipher cipher)
{

byte[] iv = cipher.getIV();
return iv;

}

Step 5 - Initialize theMACAlgorithm
In this example we will use a MAC algorithm instead of a signature algorithm. The significant difference here is
that the MACwill only tell us if the encrypted document has been tampered with, it will not authenticate the
sender.
static final String PROVIDER = "SAFENET";
static final String MAC_ALGORITHM = "DESMac";

Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);
mac.init(secretKey);

Step 6 - Process the Input File
We are now ready to process the input file to generate the encrypted output and the MAC. The following
method will accept the initialized Cipher,Mac and input/output streams. The data on the InputStreamwill be
read in blocks (of some arbitrary size), then processed by theMac instance and then encrypted with the
Cipher instance.
The encrypted data will then be written to theOutputStream. This method will return the MAC as a byte array.
static final int READ_BUFFER = 50;

byte[] encrypt(Cipher cipher, Mac mac, InputStream in,
OutputStream out)

{
byte[] block = new byte[READ_BUFFER];
int len;
while ((len = in.read(block)) != -1)
{

/*
* update our MAC value
*/
mac.update(block, 0, len);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 91

Appendix A: JCA/JCEAPI Tutorial

/*
* encrypt the data
*/
byte[] enc = cipher.update(block, 0, len);
if (enc != null)
{

/*
* output the encrypted data
*/
out.write(enc);

}
}

/*
* output the final block if required
*/
byte[] finalBlock = cipher.doFinal();
if (finalBlock != null)
{

out.write(finalBlock);
}

return mac.doFinal();
}

Step 7 - Create the EncryptedOutput
Now that we have written the various building blocks, we can construct the final encryptFile()method:
static final String PROVIDER = "SAFENET";
static final String BULK_ALGORITHM = "DES";
static final String BULK_TRANSFORM =

"DES/CBC/PKCS5Padding";
static final String MAC_ALGORITHM = "DESMac";

void encryptFile(InputStream in, OutputStream out,
PublicKey publicKey)

{
/*
* Create a random SecretKey and encrypt it using
* the recipient's PublicKey
*/
SecretKey secretKey = generateSecretKey(BULK_ALGORITHM,

PROVIDER);
byte[] wrappedKey = encryptKey(publicKey, secretKey);

/*
* Create and initialise the Cipher used to encrypt the
document

*/
Cipher bulkCipher =

Cipher.getInstance(BULK_TRANSFORM,PROVIDER);
bulkCipher.init(Cipher.ENCRYPT_MODE, secretKey);

/*
* Encode the algorithm parameters for the Cipher
*/
byte[] algParams = encodeParameters(bulkCipher);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 92

Appendix A: JCA/JCEAPI Tutorial

/*
* Create the Mac instance and initialise it with our
* session key
*/
Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);
mac.init(secretKey);

/*
* Encrypt the document to an internal buffer and
* calculate the MAC value of the plain text
*/
ByteArrayOutputStream bOut =

new ByteArrayOutputStream();
byte[] macValue = encrypt(bulkCipher, mac, in, bOut);

/*
* Encode the output file
*/
DataOutputStream dOut = new DataOutputStream(out);

/*
* Write out the key
*/
dOut.writeInt(wrappedKey.length);
dOut.write(wrappedKey);

/*
* Write out the parameters, note these may be null
*/
if (algParams != null)
{

dOut.writeInt(algParams.length);
dOut.write(algParams);

}
else
{

dOut.writeInt(0);
}

/*
* Write out the MAC
*/
dOut.writeInt(macValue.length);
dOut.write(macValue);

/*
* And finally the encrypted document
*/
bOut.writeTo(dOut);

}

File Decryption
To decrypt an encrypted file we simply need to reverse the encryption process. However, rather than using the
recipient's public key, we need to use the private key in order to recover the session key.

The decryptFile()method will:

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 93

Appendix A: JCA/JCEAPI Tutorial

1. decode the input from the various components and decipher the session key with the recipient's private key,

2. initialize the bulk cipher with the session key and algorithm parameters,

3. initialize the MAC algorithm,

4. process the encrypted input,
5. verify the calculated MACwith the MAC from the document, and

6. write out the decrypted result.

Step 1 - Decrypt the session key
static final String PROVIDER = "SAFENET";
static final String WRAP_KEYSTORE = "CRYPTOKI";
static final String WRAP_TRANSFORM = "RSA/ECB/PKCS1Padding";
static final String BULK_ALGORITHM = "DES";

Key decryptKey(PrivateKey wrapKey, byte[] wrappedKey)
{

WrappingKeyStore keyStore;
keyStore = WrappingKeyStore.getInstance(WRAP_KEYSTORE,

PROVIDER);

return keyStore.unwrapKey(wrapKey, WRAP_TRANSFORM,
wrappedKey, BULK_ALGORITHM);

}

Step 2 - Initialize the Bulk Cipher
Next, we need to create and initialize the Cipher instance we will use to decrypt the document. It is important
here to ensure that our Cipher instance that will be used to perform the decryption is initialized with the same
parameters generated by the encryption Cipher. In the case of the Thales SAFENET provider, the only
parameter type is the IvParameterSpec, so we convert our serialized parameters directly.
static final String PROVIDER = "SAFENET";
static final String BULK_ALGORITHM = "DES";

Cipher bulkCipher = Cipher.getInstance(BULK_TRANSFORM,
PROVIDER);

if (algParams != null)
{

AlgorithmParameterSpec params;
params = new IvParameterSpec(algParams);

bulkCipher.init(Cipher.DECRYPT_MODE, secretKey,
params);

}
else
{

bulkCipher.init(Cipher.DECRYPT_MODE, secretKey);
}

Step 3 - Initialize theMACAlgorithm
Initialization of the MAC during decryption is identical to that during encryption:

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 94

Appendix A: JCA/JCEAPI Tutorial

static final String PROVIDER = "SAFENET";
static final String MAC_ALGORITHM = "DESMac";

Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);
mac.init(secretKey);

Step 4 - Process the encrypted input
Next we need to recover the plaintext from the ciphertext and calculate a newMAC. This process is nearly
identical to the encrypt()method, however, since the MAC is calculated on the plaintext, we update the Mac
with the output from the Cipher.
static final int READ_BUFFER = 50;

byte[] decrypt(Cipher cipher, Mac mac, InputStream in, OutputStream out)
{

/*
* read the input in chunks and process each chunk
*/
byte[] block = new byte[READ_BUFFER];
int len;
while ((len = in.read(block)) != -1)
{

/*
* decipher the data
*/
byte[] plain = cipher.update(block, 0, len);
if (plain != null)
{

/*
* update our MAC value
*/
mac.update(plain);

/*
* output the deciphered data
*/
out.write(plain);

}
}

/*
* output the final block if required
*/
byte[] finalBlock = cipher.doFinal();
if (finalBlock != null)
{

/*
* update our MAC value
*/
mac.update(finalBlock);

/*
* output the deciphered data
*/
out.write(finalBlock);

}

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 95

Appendix A: JCA/JCEAPI Tutorial

return mac.doFinal();
}

Step 5 - Verify theMAC
To verify the MAC, we simply compare the MAC bytes we previously extracted with the value just calculated.
if (!Arrays.equals(fileMac, calculatedMac))

{
throw new GeneralSecurityException("File has been
tampered with.");

}

Step 6 -Write out the decrypted result
Now that we have verified that the file is not corrupted we can output the contents to the destination.
static final String PROVIDER = "SAFENET";
static final String BULK_ALGORITHM = "DES";
static final String BULK_TRANSFORM = "DES/CBC/PKCS5Padding";
static final String MAC_ALGORITHM = "DESMac";

void decryptFile(InputStream in, OutputStream out,PrivateKey privateKey)
{

/*
* Decode the input file
*/
DataInputStream dIn = new DataInputStream(in);

/*
* recover the encrypted Key data
*/
int keyLen = dIn.readInt();
byte[] keyBytes = new byte[keyLen];
dIn.readFully(keyBytes);

/*
* recover the algorithm parameters
*/
int algLen = dIn.readInt();
byte[] algBytes = null;
if (algLen > 0)
{

algBytes = new byte[algLen];
dIn.readFully(algBytes);

}

/*
* recover the stored MAC value
*/
int macLen = dIn.readInt();
byte[] fileMac = new byte[macLen];
dIn.readFully(fileMac);

/*
* recreate the session key
*/

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 96

Appendix A: JCA/JCEAPI Tutorial

Key secretKey = decryptKey(privateKey, keyBytes);

/*
* Create our Cipher and initialise it with our key
* and algorithm parameters.
*/
Cipher bulkCipher =

Cipher.getInstance(BULK_TRANSFORM,PROVIDER);
if (algBytes != null)
{

AlgorithmParameterSpec params;
params = new IvParameterSpec(algBytes);

bulkCipher.init(Cipher.DECRYPT_MODE, secretKey,
params);

}
else
{

bulkCipher.init(Cipher.DECRYPT_MODE, secretKey);
}

/*
* Initialise the Mac we use to verify the file
integrity

*/
Mac mac = Mac.getInstance(MAC_ALGORITHM, PROVIDER);
mac.init(secretKey);

/*
* Decrypt the file to a temporary buffer
*/
ByteArrayOutputStream bOut =

new ByteArrayOutputStream();
byte[] calculatedMac = decrypt(bulkCipher, mac, in,

bOut);

/*
* verify the stored MAC value with the calculated
value

*/
if (!Arrays.equals(fileMac, calculatedMac))
{

throw new GeneralSecurityException(
"File has been tampered with.");

}
else
{

/*
* save the decrypted output to the outputstream
*/
bOut.writeTo(out);

}
}

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 97

Appendix A: JCA/JCEAPI Tutorial

Accessing Public Keys
A Java java.security.KeyStore implementation is used to store the public keys for this application. The
Thales SAFENET provider implementation of the KeyStore is known asCRYPTOKI, and enables access to
the keys stored on the hardware. At present, thisKeyStore only supports storage of Key objects and does not
provide any support for the storage of Certificate objects. Additionally, thisKeyStorewill ignore the password
parameter supplied to the getKey()method.

Creating the KeyStore
Creating a KeyStore instance and populating it is generally a two step process. First, we create the instance
and then use the KeyStore.load()method to initialize it with the key data. The load()method accepts an
InputStream instance which allows for keys to be stored on an arbitrary data source. The CRYPTOKI
KeyStore, however, accesses key storage on the hardware directly and so ignores the load()method
completely.
static final String PROVIDER = "SAFENET";
static final String KS_NAME = "CRYPTOKI";

KeyStore loadKeyStore()
{

KeyStore ks = KeyStore.getInstance(KS_NAME, PROVIDER);
ks.load(null, null);

return ks;
}

Retrieving the Public Key
Our application needs to determine the recipient's public key in order to encrypt the file. The standard
mechanism for accessing public keys is to extract the Certificate for the recipient by using the
KeyStore.getCertificate()method and then use the Certificate.getPublicKeymethod to recover the key.
However with the CRYPTOKI KeyStorewe will simply use the KeyStore.getKey()method.
PublicKey publicKey = (PublicKey)ks.getKey(recipientAlias,

null);

Retrieving the Private Key
To decrypt the file we need to look up the private key. To access private keys stored in a KeyStore use the
KeyStore.getKey()method.
PrivateKey privateKey = (PrivateKey)ks.getKey(myAlias,

null);

Main()
Now that we have all the required building blocks, the last remaining step is to put it all together. We need to
process command line arguments and call the appropriate methods. We also need to add exception handling.

The followingmain()method is responsible for determining if we are encrypting or decrypting the file and the
names of the keys to use:

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 98

Appendix A: JCA/JCEAPI Tutorial

public static void main(String[] args)
{

boolean encrypt = false;
boolean decrypt = false;

String keyName = null;

/*
* examine all the command line arguments
*/
for (int i = 0; i < args.length; i++)
{

if (args[i].equals("-encrypt"))
{

encrypt = true;
}
else if (args[i].equals("-decrypt"))
{

decrypt = true;
}
else if (args[i].equals("-key"))
{

keyName = args[++i];
}

}

/*
* validate the arguments
*/
if (encrypt == decrypt)
{

if (encrypt)
{

System.err.println("Cannot encrypt and decrypt
file!");

}
else
{

System.err.println("Must specify -encrypt or -
decrypt.");

}
System.exit(1);

}

if (keyName == null)
{

System.err.println("Missing key name.");
System.exit(1);

}

FileCrypt fileCrypt = new FileCrypt();
KeyStore ks = fileCrypt.loadKeyStore();

if (encrypt)
{

PublicKey publicKey = (PublicKey)ks.getKey(keyName,
null);

fileCrypt.encryptFile(System.in, System.out, publicKey);

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 99

Appendix A: JCA/JCEAPI Tutorial

}
else
{

PrivateKey privateKey = (PrivateKey)ks.getKey(keyName,
null);
fileCrypt.decryptFile(System.in, System.out, privateKey);

}
}

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 100

APPENDIX B: Random Number Generation

The Safenet provider (named “safenet”) implements a java.security.SecureRandom class for generating
random data. This implementation is known as "CRYPTOKI". Besides using a hardware-based entropy
generator, one of the major benefits of this implementation is that it does not suffer from the slow initialization
problem that the Sun-provided (and most other) software implementations do.

This interface is only available under Java2.

This implementation allows access to the encryption adapter random source for both seeding and random
number generation. The SafeNet ProtectServer PCIe HSM uses hardware-based random number generation.

Serialization of an instance of this class will not save the state of the random number generator as it is
contained within the hardware.

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 101

APPENDIX C: References

This section contains a list of resources used as references in this guide:

> FIPS PUB 42-2: Data Encryption Standard

> FIPS PUB 81: DESModes of Operation

> FIPS PUB 113: Computer Data Authentication

> FIPS PUB 180-1: Secure Hash Standard

> FIPS PUB 186-1: Digital Signature Standard (DSS)

> PKCS#1: RSAEncryption Standard

> PKCS#5: Block Cipher Padding

> PKCS#11: Cryptographic Token Interface Standard

> RFC-1319: The MD2 Message-Digest Algorithm

> RFC-2104: HMAC - Keyed-Hashing for Message Authentication

> RFC-2144: The Cast-128 Encryption Algorithm

> RFC-2268: A Description of the RC2(r) Encryption Algorithm

> RFC-3281: An Internet Attribute Certificate Profile for Authorization

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 102

Glossary

Glossary

A
Adapter
The printed circuit board responsible for cryptographic processing in a HSM

AES
Advanced Encryption Standard

API
Application Programming Interface

ASO
Administration Security Officer

Asymmetric Cipher
An encryption algorithm that uses different keys for encryption and decryption. These ciphers are usually also known
as public-key ciphers as one of the keys is generally public and the other is private. RSA and ElGamal are two asym-
metric algorithms

B
Block Cipher
A cipher that processes input in a fixed block size greater than 8 bits. A common block size is 64 bits

Bus
One of the sets of conductors (wires, PCB tracks or connections) in an IC

C
CA
Certification Authority

CAST
Encryption algorithm developed by Carlisle Adams and Stafford Tavares

Certificate
A binding of an identity (individual, group, etc.) to a public key which is generally signed by another identity. A cer-
tificate chain is a list of certificates that indicates a chain of trust, i.e. the second certificate has signed the first, the

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 103

Glossary

third has signed the second and so on

CMOS
Complementary Metal-Oxide Semiconductor. A common data storage component

Cprov
ProtectToolkit C - SafeNet’s PKCS #11 Cryptoki Provider

Cryptoki
Cryptographic Token Interface Standard. (aka PKCS#11)

CSA
Cryptographic Services Adapter

CSPs
Microsoft Cryptographic Service Providers

D
Decryption
The process of recovering the plaintext from the ciphertext

DES
Cryptographic algorithm named as the Data Encryption Standard

Digital Signature
A mechanism that allows a recipient or third party to verify the originator of a document and to ensure that the doc-
ument has not be altered in transit

DLL
Dynamically Linked Library. A library which is linked to application programs when they are loaded or run rather than
as the final phase of compilation

DSA
Digital Signature Algorithm

E
Encryption
The process of converting the plaintext data into the ciphertext so that the content of the data is no longer obvious.
Some algorithms perform this function in such a way that there is no knownmechanism, other than decryption with
the appropriate key, to recover the plaintext. With other algorithms there are known flaws which reduce the difficulty
in recovering the plaintext

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 104

Glossary

F
FIPS
Federal Information Protection Standards

FM
Functionality Module. A segment of custom program code operating inside the CSA800 HSM to provide additional or
changed functionality of the hardware

FMSW
Functionality Module Dispatch Switcher

H
HA
High Availability

HIFACE
Host Interface. It is used to communicate with the host system

HSM
Hardware Security Module

I
IDEA
International Data Encryption Algorithm

IIS
Microsoft Internet Information Services

IP
Internet Protocol

J
JCA
Java Cryptography Architecture

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 105

Glossary

JCE
Java Cryptography Extension

K
Keyset
A keyset is the definition given to an allocatedmemory space on the HSM. It contains the key information for a spe-
cific user

KWRAP
Key Wrapping Key

M
MAC
Message authentication code. A mechanism that allows a recipient of amessage to determine if a message has been
tampered with. Broadly there are two types of MAC algorithms, one is based on symmetric encryption algorithms and
the second is based onMessage Digest algorithms. This second class of MAC algorithms are known as HMAC
algorithms. A DES basedMAC is defined in FIPS PUB 113, see http://www.itl.nist.gov/div897/pubs/fip113.htm. For
information on HMAC algorithms see RFC-2104 at http://www.ietf.org/rfc/rfc2104.txt

Message Digest
A condensed representation of a data stream. A message digest will convert an arbitrary data stream into a fixed size
output. This output will always be the same for the same input stream however the input cannot be reconstructed
from the digest

MSCAPI
Microsoft Cryptographic API

MSDN
Microsoft Developer Network

P
Padding
A mechanism for extending the input data so that it is of the required size for a block cipher. The PKCS documents
contain details on themost common paddingmechanisms of PKCS#1 and PKCS#5

PCI
Peripheral Component Interconnect

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 106

Glossary

PEM
Privacy EnhancedMail

PIN
Personal Identification Number

PKCS
Public Key Cryptographic Standard. A set of standards developed by RSA Laboratories for Public Key Cryptographic
processing

PKCS #11
Cryptographic Token Interface Standard developed by RSA Laboratories

PKI
Public Key Infrastructure

ProtectServer
SafeNet HSM

ProtectToolkit C
SafeNet's implementation of PKCS#11. Protecttoolkit C represents a suite of products including various PKCS#11
runtimes including software only, hardware adapter, and host security module based variants. A Remote client and
server are also available

ProtectToolkit J
SafeNet's implementation of JCE. Runs on top of ProtectToolkit C

R
RC2/RC4
Ciphers designed by RSA Data Security, Inc.

RFC
Request for Comments, proposed specifications for various protocols and algorithms archived by the Internet Engin-
eering Task Force (IETF), see http://www.ietf.org

RNG
Random Number Generator

RSA
Cryptographic algorithm by RonRivest, Adi Shamir and Leonard Adelman

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 107

Glossary

RTC
Real TimeClock

S
SDK
Software Development Kits Other documentationmay refer to the SafeNet Cprov and Protect Toolkit J SDKs. These
SDKs have been renamed ProtectToolkit C and ProtectToolkit J respectively.·The names Cprov and Pro-
tectToolkit C refer to the same device in the context of this or previous manuals.·The names Protect Toolkit J and
ProtectToolkit J refer to the same device in the context of this or previous manuals.

Slot
PKCS#11 slot which is capable of holding a token

SlotPKCS#11
Slot which is capable of holding a token

SO
Security Officer

Symmetric Cipher
An encryption algorithm that uses the same key for encryption and decryption. DES, RC4 and IDEA are all sym-
metric algorithms

T
TC
Trusted Channel

TCP/IP
Transmission Control Protocol / Internet Protocol

Token
PKCS#11 token that provides cryptographic services and access controlled secure key storage

TokenPKCS#11
Token that provides cryptographic services and access controlled secure key storage

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 108

Glossary

U
URI
Universal Resource Identifier

V
VA
Validation Authority

X
X.509
Digital Certificate Standard

X.509 Certificate
Section 3.3.3 of X.509v3 defines a certificate as: "user certificate; public key certificate; certificate: The public keys
of a user, together with some other information, rendered unforgeable by encipherment with the private key of the cer-
tification authority which issued it"

SafeNet ProtectToolkit 5.9 ReferenceGuide
007-013682-007 Rev. A 08 January 2020 Copyright 2009-2020 Thales 109

	Preface: About the SafeNet ProtectToolkit-J Reference Guide
	Gemalto Rebranding
	Audience
	Document Conventions
	Support Contacts

	Chapter 1: Product Overview
	Working With Slots
	Resource Management
	System Requirements
	The Software
	Installation
	Windows Installation
	Unix Installation Utility
	Unix Manual Installation
	Linux Installation
	Solaris Installation
	IBM AIX Installation
	HP-UX Installation

	Chapter 2: Troubleshooting
	Chapter 3: JCA/JCE API Overview
	Encryption/Decryption
	The Cipher Class
	Cipher Input and Output Streams
	SealedObject
	Algorithm Parameters

	Message Digests
	Message Authentication Code (MAC)
	Authentication
	Digital Signatures
	Object Signing

	Key Management
	Generating Random Keys
	Key Conversion
	Key Agreement Protocols
	Key Storage
	Certificates

	Error Handling and Exceptions

	Chapter 4: Supported Ciphers
	Cipher Algorithm Parameters
	DES
	DESede
	AES
	IDEA
	CAST128
	RC2
	RC4
	PBE Ciphers
	RSA

	Chapter 5: Supported Signature Algorithms
	MD2withRSA
	MD5withRSA
	SHA1withRSA
	SHA224withRSA
	SHA256withRSA
	SHA384withRSA
	SHA512withRSA
	SHA1withDSA
	DSA Key
	PKCS#1RSA
	X.509RSA
	DSARaw
	RIPEMD160withRSA
	RIPEMD128withRSA

	Chapter 6: Supported MAC Algorithms
	DES MAC
	DESede MAC
	DESedeX919 MAC
	IDEA MAC
	CAST128 MAC
	RC2
	HMAC/MD2
	HMAC/MD5
	HMAC/SHA1
	HMAC/SHA224
	HMAC/SHA256
	HMAC/SHA384
	HMAC/SHA512
	Sample MAC Code

	Chapter 7: Supported Message Digest Algorithms
	MD2
	MD5
	SHA-1
	SHA-224
	SHA-256
	SHA-384
	SHA-512
	RIPEMD160
	RIPEMD128

	Chapter 8: Key Generation
	Secret Keys
	Public Keys

	Chapter 9: Key Management
	Key Storage
	Key Wrapping
	Key Specifications

	Chapter 10: Best Practice Guidelines
	SafeNet ProtectToolkit-J Provider
	Key Protection
	General SafeNet ProtectToolkit-J Usage Guidelines

	Appendix A: JCA/JCE API Tutorial
	Public Key Cryptography
	FileCrypt Application
	File Encryption
	File Decryption
	Accessing Public Keys
	Main()

	Appendix B: Random Number Generation
	Appendix C: References
	Glossary

