
SafeNet ProtectToolkit Functionality
Module SDK 5.4
PROGRAMMING GUIDE

Document Information

Product Version 5.4

Document Part Number 007-013682-002

Release Date 08 January 2020

Revision History

Revision Date Reason

Rev. A 08 January 2020 Initial release

Trademarks, Copyrights, and Third-Party Software
Copyright 2009-2020 Gemalto. All rights reserved. Gemalto and the Gemalto logo are trademarks and service
marks of Gemalto and/or its subsidiaries and are registered in certain countries. All other trademarks and
service marks, whether registered or not in specific countries, are the property of their respective owners.

Disclaimer
All information herein is either public information or is the property of and owned solely by Gemalto and/or its
subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual
property protection in connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise,
under any intellectual and/or industrial property rights of or concerning any of Gemalto’s information.

This document can be used for informational, non-commercial, internal, and personal use only provided that:

> The copyright notice, the confidentiality and proprietary legend and this full warning notice appear in all
copies.

> This document shall not be posted on any publicly accessible network computer or broadcast in any media,
and no modification of any part of this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS” without any warranty of any kind. Unless
otherwise expressly agreed in writing, Gemalto makes no warranty as to the value or accuracy of information
contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to
the information herein. Furthermore, Gemalto reserves the right to make any change or improvement in the
specifications data, information, and the like described herein, at any time.

Gemalto hereby disclaims all warranties and conditions with regard to the information contained herein,
including all implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In
no event shall Gemalto be liable, whether in contract, tort or otherwise, for any indirect, special or

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 2

consequential damages or any damages whatsoever including but not limited to damages resulting from loss
of use, data, profits, revenues, or customers, arising out of or in connection with the use or performance of
information contained in this document.

Gemalto does not and shall not warrant that this product will be resistant to all possible attacks and shall not
incur, and disclaims, any liability in this respect. Even if each product is compliant with current security
standards in force on the date of their design, security mechanisms' resistance necessarily evolves according
to the state of the art in security and notably under the emergence of new attacks. Under no circumstances,
shall Gemalto be held liable for any third party actions and in particular in case of any successful attack against
systems or equipment incorporating Gemalto products. Gemalto disclaims any liability with respect to security
for direct, indirect, incidental or consequential damages that result from any use of its products. It is further
stressed that independent testing and verification by the person using the product is particularly encouraged,
especially in any application in which defective, incorrect or insecure functioning could result in damage to
persons or property, denial of service, or loss of privacy.

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the
copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or
otherwise without the prior written permission of Gemalto.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 3

CONTENTS

Preface: About the FM SDK Programming Guide 9
Customer Release Notes 9
Gemalto Rebranding 10
Audience 10
Document Conventions 10
Notes 10
Cautions 11
Warnings 11
Command Syntax and Typeface Conventions 11

Support Contacts 13

Chapter 1: Overview 14
Features 14

Chapter 2: Setup 15
Installing the FM SDK 15
Environment Variables 16

Chapter 3: FM Architecture 18
FM Support within the HSM Hardware 18
FM Support in Emulation Mode 21

Chapter 4: FM Development 24
Lifecycle Outline 24
Initial Development 26
Emulation Build 26
Adapter Build 26
Production Build 27
Key Management 27
Contents of the $(FMSDK) Directory 28
SDK Installation Tips 29
Protecting Data Storage of FM 29
Cprov Function Patching 30
FM Message Dispatching 30
Handling Host Processes 31
Memory Alignment Issues 31
Memory Endian Issues 31

Chapter 5: Setting up an MSYS environment and cross-compiler 32
Download MinGWand the toolchain source code 32
Build and install the cross-compiler 33

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 4

Automated cross-compiler build 33
Manual cross-compiler build 33

Set the MSYS environment to include the FMDIR and CPROVDIR directories 35

Chapter 6: FM Samples 36
RSAENC 38
XORSign 38
restrict 39
safedebug 39
cipherobj 39
smfs 39
javahsmreset 39
javahsmstate 39
secfmenc 40
Emulation builds and test steps 40
Adapters builds and test steps 40

Chapter 7: Building sample FMs in emulation mode on Windows 41
Copy the samples and emulation source folders 41
Set the environment variables 41
Compile the binaries 41

Chapter 8: Utilities Reference 43
CTCERT 43
CTCONF 43
CTFM 43
MKFM 43

Chapter 9: Cipher Object 45
FmCreateCipherObject 47
New 49
Free 50
GetInfo 51
EncInit 52
EncryptUpdate 53
EncryptFinal 54
DecInit 55
DecryptUpdate 56
DecryptFinal 57
SignInit 58
SignUpdate 59
SignFinal 60
SignRecover 61
VerifyInit 62
VerifyUpdate 63
VerifyFinal 64
VerifyRecover 65

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 5

Verify 67
LoadParam 68
UnloadParam 69
Config (Obsolete) 70
Status (Obsolete) 70
EncodeState (Obsolete) 71
DecodeState (Obsolete) 71
AESCipher Object 72
DESCipher Object 73
Triple DESCipher Object 75
ECDSACipher Object 77
IDEACipher Object 80
RC2 Cipher Object 81
RC4 Cipher Object 82
RSACipher Object 83

Chapter 10: Hash Object 86
FmCreateHashObject 86
Init 89
Update 90
Final 91
Free 92
GetInfo 93
LoadParam 94
UnloadParam 95

Chapter 11: Setting Privilege Level 96
SetPrivilegeLevel 96

Chapter 12: SMFS Reference 97
Important Constants 97
Error Codes 97
File Attributes Structure (SmFsAttr) 98
SmFsCreateDir 100
SmFsCloseFile 101
SmFsCalcFree 102
SmFsCreateFile 103
SmFsDeleteFile 104
SmFsFindFile 105
SmFsFindFileClose 106
SmFsFindFileInit 107
SmFsGetFileAttr 108
SmFsGetOpenFileAttr 109
SmFsOpenFile 110
SmFsReadFile 111
SmFsRenameFile 112
SmFsWriteFile 113

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 6

Chapter 13: FMDEBUG Reference 114
debug (macro) 115
printf/vprintf 115
DBG_INIT 116
DBG 117
DBG_PRINT 118
DBG_STR 119
DUMP 120
DBG_FINAL 121

Chapter 14: Message Dispatch API Reference 122
MD_Initialize 123
MD_Finalize 124
MD_GetHsmCount 125
MD_GetHsmState 126
MD_ResetHsm 128
MD_SendReceive 129
MD_GetParameter 133
FM Host Legacy Functions API 134

Chapter 15: HSM Functions Reference 135
Summary 135
HIFACEReply Management Functions 136
SVC_GetReplyBuffer 137
SVC_ConvertReqToReply 137
SVC_ResizeReplyBuffer 138
SVC_DiscardReplyBuffer 138
SVC_GetPid 139
SVC_GetOid 139
SVC_GetRequest 139
SVC_GetRequestLength 140
SVC_GetReply 140
SVC_GetReplyLength 141
SVC_GetUserReplyBufLen 141
SVC_SendReply 141

Functionality module dispatch switcher function 143
FMSW_RegisterDispatch 143

Serial communication functions 144
SERIAL_SendData 144
SERIAL_ReceiveData 145
SERIAL_WaitReply 145
SERIAL_FlushRX 146
SERIAL_GetNumPorts 146
SERIAL_InitPort 146
SERIAL_GetControlLines 147
SERIAL_SetControlLines 148
SERIAL_SetMode 148

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 7

SERIAL_Open 149
SERIAL_Close 150

High Resolution Timer Functions 150
THR_BeginTiming 150
THR_UpdateTiming 151

Cprov function patching helper function 151
OS_GetCprovFuncTable 152

Current Application ID functions 152
FM_GetCurrentPid 152
FM_GetCurrentOid 152
FM_SetCurrentPid 153
FM_SetCurrentOid 153

PKCS#11 State Management Functions 153
FM_SetAppUserData 154
FM_GetAppUserData 155
FM_SetSlotUserData 155
FM_GetSlotUserData 156
FM_SetTokenUserData 157
FM_GetTokenUserData 158
FM_SetTokenAppUserData 158
FM_GetTokenAppUserData 159
FM_SetSessionUserData 160
FM_GetSessionUserData 161

FM Header Definition Macro 162

Appendix A: Glossary 163

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 8

Preface: About the FM SDKProgramming Guide

PREFACE:
About the FM SDK Programming Guide

This document describes how the FM SDK is used to write, test, install, and use functionality modules to
provide custom functions on the HSM. It contains the following chapters:

> "Overview" on page 14

> "Setup" on page 15

> "FMArchitecture" on page 18

> "FMDevelopment" on page 24

> "Utilities Reference" on page 43

> "Cipher Object" on page 45

> "HashObject" on page 86

> "Setting Privilege Level" on page 96

> "SMFS Reference" on page 97

> "FMDEBUGReference" on page 114

> "Message Dispatch API Reference" on page 122

> "HSMFunctionsReference" on page 135

> "Glossary" on page 163
This preface also includes the following information about this document:

> "Customer Release Notes" below

> "Gemalto Rebranding" on the next page

> "Audience" on the next page

> "Document Conventions" on the next page

> "Support Contacts" on page 13

For information regarding the document status and revision history, see "Document Information" on page 2.

Customer Release Notes
The customer release notes (CRN) provide important information about this release that is not included in the
customer documentation. It is strongly recommended that you read the CRN to fully understand the
capabilities, limitations, and known issues for this release. You can view or download the latest version of the
CRN for this release at the following location:

http://www.securedbysafenet.com/releasenotes/ptk/crn_ptk_5-4.pdf

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 9

http://www.securedbysafenet.com/releasenotes/ptk/crn_ptk_5-4.pdf

Preface: About the FM SDKProgramming Guide

Gemalto Rebranding
In early 2015, Gemalto completed its acquisition of SafeNet, Inc. As part of the process of rationalizing the
product portfolios between the two organizations, the Luna name has been removed from the SafeNet HSM
product line, with the SafeNet name being retained. As a result, the product names for SafeNet HSMs have
changed as follows:

Old product name New product name

ProtectServer External 2 (PSE2) SafeNet ProtectServer Network HSM

ProtectServer Internal Express 2 (PSI-E2) SafeNet ProtectServer PCIe HSM

ProtectServer HSM Access Provider SafeNet ProtectServer HSM Access Provider

ProtectToolkit C (PTK-C) SafeNet ProtectToolkit-C

ProtectToolkit J (PTK-J) SafeNet ProtectToolkit-J

ProtectToolkit M (PTK-M) SafeNet ProtectToolkit-M

ProtectToolkit FM SDK SafeNet ProtectToolkit FM SDK

NOTE These branding changes apply to the documentation only. The SafeNet HSM
software and utilities continue to use the old names.

Audience
This document is intended for personnel responsible for maintaining your organization's security
infrastructure. This includes SafeNet ProtectToolkit users and security officers, key manager administrators,
and network administrators.

All products manufactured and distributed by Gemalto are designed to be installed, operated, and maintained
by personnel who have the knowledge, training, and qualifications required to safely perform the tasks
assigned to them. The information, processes, and procedures contained in this document are intended for
use by trained and qualified personnel only.

It is assumed that the users of this document are proficient with security concepts.

Document Conventions
This document uses standard conventions for describing the user interface and for alerting you to important
information.

Notes
Notes are used to alert you to important or helpful information. They use the following format:

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 10

Preface: About the FM SDKProgramming Guide

NOTE Take note. Contains important or helpful information.

Cautions
Cautions are used to alert you to important information that may help prevent unexpected results or data loss.
They use the following format:

CAUTION! Exercise caution. Contains important information that may help prevent
unexpected results or data loss.

Warnings
Warnings are used to alert you to the potential for catastrophic data loss or personal injury. They use the
following format:

WARNING Be extremely careful and obey all safety and security measures. In
this situation you might do something that could result in catastrophic data loss or
personal injury.

Command Syntax and Typeface Conventions

Format Convention

bold The bold attribute is used to indicate the following:
> Command-line commands and options (Type dir /p.)
> Button names (Click Save As.)
> Check box and radio button names (Select thePrint Duplex check box.)
> Dialog box titles (On theProtect Document dialog box, click Yes.)
> Field names (User Name:Enter the name of the user.)
> Menu names (On the Filemenu, click Save.) (Click Menu > Go To > Folders.)
> User input (In theDate box, typeApril 1.)

italics In type, the italic attribute is used for emphasis or to indicate a related document. (See the
Installation Guide for more information.)

<variable> In command descriptions, angle brackets represent variables. Youmust substitute a value for
command line arguments that are enclosed in angle brackets.

[optional]
[<optional>]

Represent optional keywords or <variables> in a command line description. Optionally enter the
keyword or <variable> that is enclosed in square brackets, if it is necessary or desirable to
complete the task.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 11

Preface: About the FM SDKProgramming Guide

Format Convention

{a|b|c}
{<a>||<c>}

Represent required alternate keywords or <variables> in a command line description. Youmust
choose one command line argument enclosed within the braces. Choices are separated by vertical
(OR) bars.

[a|b|c]
[<a>||<c>]

Represent optional alternate keywords or variables in a command line description. Choose one
command line argument enclosed within the braces, if desired. Choices are separated by vertical
(OR) bars.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 12

Preface: About the FM SDKProgramming Guide

Support Contacts

Contact method Contact

Phone
(Subject to change. An up-to-
date list is maintained on the
Technical Support Customer
Portal)

Global +1 410-931-7520

Australia 1800.020.183

India 000.800.100.4290

Netherlands 0800.022.2996

New Zealand 0800.440.359

Portugal 800.863.499

Singapore 800.1302.029

Spain 900.938.717

Sweden 020.791.028

Switzerland 0800.564.849

United Kingdom 0800.056.3158

United States (800) 545-6608

Web https://safenet.gemalto.com

Technical Support Customer
Portal

https://supportportal.gemalto.com
Existing customers with a Technical Support Customer Portal account can log in
tomanage incidents, get the latest software upgrades, and access the Knowledge
Base. To create a new account, click theRegister link at the top of the page. You
will need your Customer Identifier number.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 13

https://safenet.gemalto.com/
https://supportportal.gemalto.com/

CHAPTER 1:
Overview

AFunctionality Module (FM) is custom-developed, customer-specific code that operates within the secure
confines of a Hardware Security Module (HSM). You can use the SafeNet ProtectToolkit FM SDK to develop
FMs for the SafeNet ProtectServer Network HSM and SafeNet ProtectServer PCIe HSM, introduced in release
5.0.

FMs allow application developers to design security-sensitive program code, which can be downloaded into
the HSM to operate as part of the HSM firmware. This functionality may be required to implement custom
algorithms, or to isolate security-sensitive code from the host environment. FMs can make full use of the HSM
functionality, which is provided using a PKCS#11-compliant Application Programming Interface (API). The
SafeNet ProtectToolkit FM SDK allows developers an extensive opportunity to create a wide range of
customized high-security applications.

To assist in the development of FMs, the SafeNet ProtectToolkit FM SDK contains support for FM emulation on
the Host System.

This document is intended for software developers, as a technical reference describing the programming
methodologies and functions used for developing Functionality Modules and host-side applications.

Features
Host apps are supported on all platforms supporting the SafeNet ProtectToolkit SDK. FMs have to be cross-
compiled on Linux. The FM SDK provides the following components:

> Sample FM code

> Sample host-side code

> Build scripts

> Host–side libraries

> Java classes to access HSMs

> Java docs

> FM binary image generation tools (Linux only)

> FM libraries (Linux only)

> FM emulation libraries (Linux only)

The SafeNet ProtectToolkit FM SDK requires SafeNet ProtectToolkit-C.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 14

CHAPTER 2:
Setup

To use the FM SDK for building FMs or Host applications, you must install both the SafeNet ProtectToolkit FM
SDK and SafeNet ProtectToolkit-C SDK software on your development workstation. On Linux, you must also
install the FM toolchain.

NOTE You cannot install the SafeNet ProtectToolkit runtime and FM SDK on the same
workstation. It is recommended that you do your FM development on a separate workstation.

For details regarding the installation or uninstallation of the software discussed in this manual, please refer to
the SafeNet ProtectToolkit-C Administration Guide.

Installing the FM SDK
All of the software required to install and configure the FM SDK can be downloaded from the Gemalto eService
Support Portal at https://serviceportal.safenet-inc.com.

Before you use the FM SDK, you must configure your environment, as described in "Environment
Variables" on the next page.

Windows
To install the FM SDK on Windows, you must install the SafeNet ProtectToolkit FM SDK and SafeNet
ProtectToolkit-C SDK software. Before using the FM SDK, you must run a script to configure your environment,
as described in "Environment Variables" on the next page.

To install the FM SDK software:

1. Log in to the computer as the Administrative user.
2. Install the SafeNet ProtectToolkit-C software, as described in the SafeNet ProtectToolkit-C Administration

Guide.

3. Go to the folder for your architecture in the installer directory:
64-bit: cd <path to directory>\SDKs\Win64
32-bit: cd <path to directory>\SDKs\Win32

4. Run the following .msi file to install the SafeNet ProtectToolkit FM SDK software:

fm_sdk\PTKfmsdk.msi

To configure your FM SDK environment:

See "Environment Variables" on the next page.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 15

https://serviceportal.safenet-inc.com/

Chapter 2: Setup

Linux
To install the FM SDK on Linux, you must install the SafeNet ProtectToolkit FM SDK and SafeNet
ProtectToolkit-C SDK software. Before using the FM SDK, you must run a script to configure your environment.
You can add the script to your startup file (for example, .bashrc) to have it set up the environment each time
you open a shell, or you can source the script each time you open a shell that you will use for FM development.
See "Environment Variables" below.

To install the FM SDK software:

1. Log in to the computer as the Administrative user.
2. Install the SafeNet ProtectToolkit-C software, as described in the SafeNet ProtectToolkit-C Administration

Guide.

3. Go to the folder for your architecture in the installer directory:
64-bit: cd <path to directory>\SDKs\Linux64
32-bit: cd <path to directory>\SDKs\Linux

4. Install the RPM file for your architecture to install the SafeNet ProtectToolkit FM SDK software:
64-bit: ptkc_sdk/PTKfmsdk-<release>.x86_64.rpm
32-bit: ptkc_sdk/PTKfmsdk-<release>.x86.rpm

To configure your FM SDK environment:

See "Environment Variables" below.

Environment Variables
FM developers should ensure that their development environment is configured correctly and that all required
files and library locations are set. This chapter is provided as a guideline for setting up the development
environment so that required files can be accessed during the FM compile and link routines.

In order to be able to use the build scripts, the following environment variables are used:

> CPROVDIR: Specifies the installed location of the Cprov SDK (SafeNet ProtectToolkit-C)

> FMDIR: Specifies the installed location of the FM SDK

Setting the Environment Variables
The environment variables are set using scripts.

To set the environment variables on Linux:

1. Go to the SafeNet ProtectToolkit software installation directory:
cd /opt/safenet/protecttoolkit5/ptk

2. Source the setvars.sh script:
/setvars.sh

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 16

Chapter 2: Setup

To set the environment variables on Windows:

1. Go to the SafeNet ProtectToolkit FM SDK software installation directory:
cd <fmsdk_install_dir>\bin

2. Run the fmsdkvars.bat script:
/fmsdkvars.bat

Windows Environment Variable Paths
Please note that the Windows build scripts cannot handle space (“ ”) characters in the environment variables
mentioned above. If the paths to the install locations contain a space in the directory name (e.g.C:\Program
Files\SafeNet\Cprov SDK), you should use the short names of the directories that contain spaces (e.g.
C:\Progra~1\SafeNet\CprovS~1). The short format of the directory names can be discovered using the ‘/x’
switch in a dir command. For example, you can use dir /x c:\progra* command to discover the short name of
the “Program Files” directory.

NOTE If you are using the provided FM SDK fmsdkvars.bat script, the paths are already
converted to their short form.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 17

CHAPTER 3:
FM Architecture

This chapter describes the basic architecture of your FM SDK, and includes the following sections:

> "FMSupport within the HSMHardware" below

> "FMSupport in EmulationMode" on page 21

FM Support within the HSMHardware
FMs allow application developers to design security-sensitive program code, which is uploaded into the HSM
and operatse as part of the HSM firmware. The SafeNet ProtectToolkit FM SDK also provides application
developers with APIs to develop applications on a host to interface to the HSM.

The FM may contain custom-designed functions which then access the Cryptoki library to perform
cryptographic operations. Alternatively, the FM may contain functions that conform to the PKCS#11 standard
and contain additional operations that are performed prior to passing the request to the Cryptoki library. The
former are referred to as custom functions and the latter are referred to as patched PKCS#11 functions.

Starting with SafeNet ProtectToolkit version 5.4, you can upload multiple custom FMs to an HSM and use them
simultaneously. Only one PKCS#11 patched FM can be loaded and used at a time. If a patched FM is already
loaded, it is overwritten by the new FM. Refer to the FMSDK ProgrammingGuide for descriptions of these FM
types.

The following diagrams show the various components of the FM system, relevant to the host and HSM:

> "The components and interfaces in a system using FunctionalityModules for CustomFunctions" on the
next page

> "The components and interfaces in a system using FunctionalityModules for Patched Functions" on
page 20

The diagrams are presented this way for ease of illustration, and because FMs tend to be used in
environments where either only custom functions or only PKCS#11 functions are utilized. However, there is no
constraint that prevents a FM from containing a mixture of both custom and patched PKCS#11 functions.

Each figure marks the boundaries of the host system and the adapter in order to clarify where each component
resides. The boxes represent components and the arrows represent the interaction or data flow between the
components. Only the message request path is shown in the diagrams, as this method allows illustration of
which component originates the interaction. The message response follows the same path but in the opposite
direction and is not shown on the diagram. The names given to these interfaces are directly, or indirectly
related to the libraries provided in the SafeNet ProtectToolkit FM SDK.

The data flows in the diagrams are depicted using the notation:

API (Function Type)

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 18

Chapter 3: FM Architecture

For example, in "The components and interfaces in a system using FunctionalityModules for Custom
Functions" below, the arrow labeled MD (custom functions) indicates the flow of custom function request
packages passed between components via the Message Dispatch (MD) API (refer to "Message Dispatch API
Reference" on page 122 for details). EPP (custom functions) refers to Custom function request packages
passed from the host across the PCI bus (in the case of local HSMs) or across a TCP/IP link (in the case of
remote HSMs), via an unpublished Gemalto-proprietary protocol.

Custom Functions
"The components and interfaces in a system using FunctionalityModules for CustomFunctions" below depicts
the components contained in the Host system and the HSM when using custom functions. The custom
application is executed on the host system. A user-defined protocol specifying the message response and
request packages for each function must be defined by the application developer. This protocol is used to
access the FM’s custom functions. The host requests are transparently communicated directly to the FM
module, which implements the protocol.

Figure 1: The components and interfaces in a system using Functionality Modules for Custom
Functions

These message response and request packages are transferred between the application and the PCIe or
Network HSM Access Provider, via the Message Dispatch (MD) API. The legacy FM Host API has been
deprecated since Version 2.0 of ProtectProcessing Orange (legacy name of the FM SDK). As of FM SDK 5, the
Host API functions are no longer supported nor maintained. Since the previous Host API library makes use of
MD API to communicate with the HSM, existing binaries using the the old API should continue to function, but
support will no longer be provided for developers not using the MD API.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 19

Chapter 3: FM Architecture

The PCI driver provides the interface to the PCIe bus and is used in systems deploying local HSMs. The
NetServer Driver provides the interface to the WAN/LAN network and is used in systems which deploy remote
HSMs. It is not possible for a system to utilize remote and local HSMs at the same time. At configuration time,
either the PCIe or Network HSM Access Provider is specified as appropriate to the installation (refer to the
SafeNet HSMAccess Provider Installation Guide for details).

In the HSM, the message request/response is processed via modules, collectively referred to here as the
Message Processing Modules. Any message request/response containing a custom function is passed to the
FM for processing. The custom function can access the cryptographic functionality provided in the firmware via
PKCS#11 function calls. FM functions have access to any of the Serial, C Runtime and original PKCS#11
functions from HSM firmware.

PKCS#11 Patched Functions
Figure 2: The components and interfaces in a system using Functionality Modules for Patched
Functions

"FMArchitecture" on page 18 depicts the components contained in the Host system and the HSM when using
PKCS#11 functions. The custom application is executed on the host system. The application accesses patched
PKCS#11 functions in the FM and the standard PKCS#11 functionality of the Cryptoki library provided in the
firmware module via a standard PKCS#11 interface provided by the Cryptoki library on the host system.

The Message Processing Modules contain a list of patched PKCS#11 functions, to which the incoming function
is compared. The Message Processing Modules call the PKCS#11 function from HSM firmware if the function
isn’t patched or gives control to an FM version of same function if it is patched. FM implementations of patched

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 20

Chapter 3: FM Architecture

functions can call any of the Serial, C Run Time and original PKCS#11 functions from the HSM firmware. The
PKCS#11 functions called from within the FM call the firmware implementation directly, bypassing the
Message Processing Modules.

An FM can implement both Custom functions and PKCS#11 patched functions simultaneously.

FM Support in EmulationMode
In emulation mode, all components run on the host system. The diagram below shows the various components
when the FM is executed in emulation mode.

Figure 3: The components of a system emulating Functionality Modules

The figure above depicts the components of the FM emulation system. The Functionality Module is combined
into a DLL with emulation libraries to provide FM SDK features such as the Cprov function-patching and serial
port access.

Applications that need to observe the effects of the FM, via PKCS#11 patching or custom functions, are run
against emulation wrappers for cryptoki and ethsm. These wrapper libraries are built from source as part of
the emulation FM build and result in dynamic libraries. This allows existing applications to run against the
emulation FM.

The emulation wrapper libraries load the emulated FM, which loads the SafeNet ProtectToolkit Software
Emulation Cryptoki library. Messages are routed by the emulation libraries the FM is linked against, as shown
in the diagram above.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 21

Chapter 3: FM Architecture

EmulationMode Limitations

Supported Platforms
FM Emulation using the SafeNet ProtectToolkit FM SDK is supported on Linux only.

Applications being run against an emulation FM must be run locally. NetServer cannot be used to allow remote
applications to connect to the emulated FM and cryptoki wrapper.

Supported C APIs
Emulation mode uses the standard C library installed on the host. The SafeNet ProtectToolkit FM SDK is C99
compliant, extended to support the following non-standard APIs:

ctype.h

isascii, toascii

string.h

strdup, strsep
Any code written using these APIs will fail in emulation mode, unless you explicitly instruct your compiler to
allow them. The example below illustrates how to allow these non-standard APIs in emulation mode using
GCC.

If your emulation environment uses glibc, such as the standard gcc environment on Red Hat, you may define
the following to enable these non-standard libc functions in emulation mode:
Note that we test for gcc, not glibc, because the compile time glibc flag is set in features.h, but OVERRIDE_
GNU_SOURCEmust be set before features.h is included.

NOTE Important: Since every GNU header includes features.h, you must put this at the
top of any source files in which you wish to use the extended functions, or it will not be applied.

#if defined(EMUL) && defined (__GNUC__)
/*
* Define _GNU_SOURCE flag to enable non-standard API's that are supported in the FM LIBC
* but not necessarily by all EMUL environments:
* ctype.h: isascii, toascii
* string.h: strdup,strsep
*/
#define _GNU_SOURCE
#define EXTENDED_OK
#endif

Source Level Debugging
When debugging an emulation FM, you will be able to step through the application and into the message
encoding function.

The emulation versions of theMD_Initialize and C_Initialize function call the FM’s Startup function. The
Startup function will only be executed once.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 22

Chapter 3: FM Architecture

The emulation version of theMD_SendReceive function calls the FM’s Dispatch entry function via the ethsm
emulation layer.

However, when the message encoding function calls theMD_Initialize orMD_SendReceive functions you
will not be able to step into these functions because no symbols or source code is supplied.

The best method to step through your FM code is to set a break point at the start of the Startup and Dispatch
entry point functions.

Random Number Generator
The emulation Cryptoki library does not provide true random numbers. Although the FIPS 140-approved
Pseudo Random Number Generator is implemented in the emulation version, there is insufficient entropy to
make good quality random numbers.

Do not use the emulation to create production-grade keys.

Tampering the Secure Memory
The emulation Cryptoki library does not support the concept of a hardware tamper event.

You may delete the emulation Cryptoki data directory to simulate a total loss of secure memory. However you
should only do this when the Cryptoki library is not running.

The emulation Cryptoki data directory default location is

Windows: c:\cryptoki
Linux: ~/.cryptoki/cryptoki
The emulation data directory can be changed via the ET_PTKC_SW_DATAPATH entry in the SafeNet
ProtectToolkit configuration file. See the SafeNet ProtectToolkit-C Administration Guide for more information.

Cryptoki Function Patching
The emulation is capable of supporting Cryptoki function patching of any application run against the emulated
cryptoki wrapper built with the emulated FM. Unlike Protect Processing 3.0 and earlier releases, applications
do not have to be recompiled with the emulated libraries; they must have the emucprov and
emumdapiwrapper libraries in the library search path ahead of the real Cryptoki library.

ETHSM
The timeout parameter ofMD_SendReceive() is ignored in emulation mode.

Cryptoki FM Object
Due to the way the emulated FM is linked with the application and Cryptoki libraries, it does not appear as an
object via cryptoki.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 23

CHAPTER 4:
FM Development

This chapter outlines the development life cycle of your FM SDK, and includes the following:

> "Lifecycle Outline" below

> "Initial Development" on page 26

> "Emulation Build" on page 26

> "Adapter Build" on page 26

> "Production Build" on page 27

> "KeyManagement" on page 27

> "Contents of the $(FMSDK) Directory" on page 28

> "SDK Installation Tips" on page 29

> "Protecting Data Storage of FM" on page 29

> "Cprov Function Patching" on page 30

> "FMMessage Dispatching" on page 30

> "Handling Host Processes" on page 31

> "Memory Alignment Issues" on page 31

> "Memory Endian Issues" on page 31

Lifecycle Outline
The following diagram illustrates the recommended development cycle to be undertaken when developing
functionality modules for a SafeNet ProtectServer HSM.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 24

Chapter 4: FM Development

Figure 4: FM Development Lifecycle

As shown in the diagram, the flow of development activities is comprised of the following stages:

> "Initial Development" on the next page:
Includes the design and development of the functionality application code for initial testing.

> "Emulation Build" on the next page
This process compiles the FM code for the emulation environment.

> "Emulation Test" on the next page:
The FM produced during the previous steps should now be completely tested in emulation mode to ensure
correct operation. Should errors be found in the emulation build, the developer should repeat the
build/test/debug cycle until successful operation is confirmed.

> "Adapter Build" on the next page:
The functionality module should now be built for the HSM environment. The FM is downloaded onto the
HSM hardware and again tested to ensure it operates as expected.

> "Production Build" on page 27:
Finally, the FM is produced and released for the operational environment it was intended.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 25

Chapter 4: FM Development

Initial Development
This phase begins development, from the specification of the requirements to the completion of the design.
Programming the FM, and the host-side libraries and/or application can also be considered part of this stage. It
is assumed that at this stage, the test procedures are also developed.

Emulation Build
In this phase, the FM and the host-side libraries and applications are built for the emulation environment.

This stage is complete when the FM executes correctly within the emulation DLL, and the host-side
executables (and possibly the DLLs) are generated successfully.

Emulation Test
The test procedures must have been created prior to this stage. The emulation binaries generated in the
previous stage are used to execute the test procedures and determine whether the FM satisfies its
requirements. Since the message dispatching code is not compiled in the emulation build, tests for problems in
serialization of data do not need to be performed in this stage.

The development usually stays in the Emulation Build/Emulation Test loop until all the problems detected are
fixed. During this stage, developers are encouraged to use a debugger to step through the FM as well as the
host source code.

Adapter Build
After the emulation build passes all the tests, the FM must be tested in the HSM. Although the emulation build is
a very close approximation of the HSM environment, there are components such as function patching and the
dispatch/retrieval of messages between the host and HSM, which are not tested during the emulation test
stage.

In this phase, the developer generates the binary FM image and signs it using either a temporary or a
permanent development key. Once the image is signed, it can be downloaded to the HSM for the next stage of
testing.

Adapter Test
In the HSM test stage, the development build of the FM is tested in its production environment. The tests
performed in the emulation environment should also be repeated, to validate the implementation.

If problems are detected in this stage, the developer may choose to resolve them in the emulation test stage or
the HSM test stage. The choice usually depends on the seriousness of the problem and the area in which the
problem was detected. Since the message serialization code is not compiled in the emulation environment, it is
unnecessary to go back to the emulation build stage when a problem in this area is detected.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 26

Chapter 4: FM Development

Production Build
When convinced that the implementation of the FM and the host side code is correct, a production build of the
system is performed.

In this stage, the developer generates the FM binary image, and the responsible person signs it using the
production private key.

Acceptance Test
When the production binaries are available, the acceptance tests are performed on the final system before the
binaries are released.

Key Management
All FM images downloaded to the HSM must have an assigned signature. FMs are only executed inside the
HSM after this signature has been validated. The management of the keys used to sign/verify the firmware is
completely controlled by the developers of the FM. SafeNet does not have any responsibility for the FM key
management scheme.

The certificate used to validate the FM binary image must exist in the Admin Token of the HSM where the FM is
to be installed. If the certificate does not already exist in the Admin Token, the Administrator will be required to
install the certificate in the Admin Token. Furthermore, the verification and downloading of the FM requires the
HSM Administrator to provide the Admin Token password, enforcing the presence of the HSM Administrator at
the time of the download operation.

As previously advised, there is no pre-defined key management scheme for the private key and the certificate.
The FM developer must decide early on the key management scheme to be used in the system.

Example Key-Management Scheme
This sample approach to a key management scheme can be customized and extended.

It is recommended that the key used to sign FMs in the Adapter Build phase is not the same as the key used to
sign it in the Production Build phase. This would ensure that an FM in the Adapter Build or Adapter Testing
phase cannot be used by end-users or customers. Additionally, a production-level FM signing key requires
stricter access control than the development signing keys. Using this key to sign FM images in the Adapter
Build phase would make development more difficult.

The simplest development key management scheme is to generate a new self-signed key/certificate pair every
time the FM image is created. This can be done using the SafeNet ProtectToolkit-C ctcert tool. Please note
that the signing key cannot be used from the Admin Token because of limitations on how themkfm utility
addresses keys. Therefore, the key/certificate pair must be created on another token and the certificate must
be imported into the Admin Token. Importing can be done either by backing up the certificate on smartcards
and restoring it to the Admin Token, or exporting the certificate to a file and then re-importing it into the Admin
Token using the ctcert tool.
After the certificate is in the Admin Token, the Admin Token SOmust login to the token and mark the certificate
as “trusted”. This can be achieved using the ctcert tool.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 27

Chapter 4: FM Development

After the certificate is marked as trusted, the raw FM binary image can be signed with the generated private
key, using themkfm utility. The signed FM image can then be downloaded into the HSM using the ctconf
utility.

There must be a non-development HSM to hold the production key/certificate pair. The key/certificate pair
used to sign a production FM can use the most appropriate of the following three approaches:

Self-Signed certificate
This scheme does not provide any authentication of the FM. However, it is very easy to set up and use. If the
certificate must be handed to a third party, it must be done using a trusted channel – treating the certificate as a
secret key. This scheme is most suitable for companies developing FMs for internal use only.

Certificate signed by a trusted third party
The signing key and the certificate are obtained from a trusted third-party CA. This scheme ensures the
authenticity of the certificate, and allows the certificate to be transmitted to another party over an untrusted
channel.

Use of a local CA signing key
This scheme requires the FM developers to obtain a signing key/certificate from a trusted third party for local
CA operations. Then, another signing key/certificate pair is generated locally for signing production-level FMs.
This allows multiple signing keys to be created, authenticating each FM separately.

Contents of the $(FMSDK) Directory
When installed for FM development (as opposed to host only development) the $(FMSDK) directory contains
the following:

Directory or
file

Description

bin/ Non-toolchain utilities and tools for creating an FM

Doc/ FM Development documentation

Include/ Header files specific to FM and FM Host Application development. These are used together with
headers provided by SafeNet ProtectToolkit-C in $(CPROVDIR)/ include.

lib/ppcfm/ Static libraries used for building an FM that will run in a PCIe2 HSM.

lib/linux-
i386/

Static libraries used for building an emulationmode FM that will run on the host computer.

samples/ Sample FMs and FM Host applications described below.

src/emul/ Source files used for building wrapper cryptoki and ethsm libraries required with FM emulation.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 28

Chapter 4: FM Development

Directory or
file

Description

cfgbuild.mak Common configurationmakefile that sets upmakefile and toolchain variables and rules required for
building an FM. This should be included at the top of any FM’s makefile.

SDK Installation Tips
When installing the FM SDK, it defaults to a system installation path. As long asCPROVDIR and FMDIR are
set to the system paths, the samples may be copied elsewhere so they can be built and modified by a non-root
user.

Protecting Data Storage of FM
When the FM is used to extend HSM functionality, there is usually data that must be protected by the HSM.
Normally, this data would be stored in one of the tokens as a Cryptoki Object. Protection of these objects poses
a problem, however, because setting the SENSITIVE attribute on the object would prevent access from the
FM, and leaving it open would allow access to any PKCS#11 application on the host side.

There are three possible solutions to this problem –

> Token blocking

> Using Privilege Level

> Using the SMFS

Token Blocking
As shown in the sample FM "restrict" on page 39, the FM can patch the C_OpenSession() PKCS#11
function, preventing any session from being open to the slot containing the objects used by the FM. In
PKCS#11, all functions that can access or export the object need a session handle to the token containing the
object, and the FM patches the C_OpenSession() to prevent applications from obtaining the required session
handle. This method effectively reserves one or more tokens of the HSM for the FM's internal use, and
prevents any kind of access to the contents of this token from the host side.

Using Privilege Level
The CT_SetPrivilegeLevel function allows a simple solution. As shown in the sample FM "XORSign" on
page 38, the FM can make a call to temporarily obtain the rights to read Sensitive object attributes.

This allows the FM designer to create and manage keys using the tools provided with the HSM, so they are
safe from outside programs but still accessible from the trusted FM.

Using the SMFS
The Secure Memory File System provides access to the same low-level key storage facility. By creating a new
application directory, the FM designer can store keys without them being visible through the HSM's Cryptoki
interface.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 29

Chapter 4: FM Development

The key format is up to the FM designer – they need not have attributes as Cryptoki objects do.

There is no need to callC_Initialize, open sessions, or search for object handles if you use the SMFS to store
your keys.

FMs that store their keys in SMFS need to provide all the functions to generate, store, delete, backup, and
restore these keys.

When creating FMs that open an SMFS file and keep the handle open, developers should note:

When an application callsC_Initializefor the first time after the HSM is rebooted, the HSM firmware will close
all SMFS handles. So if you open an SMFS file during startup, the nextC_Initialize call will close the file. Also,
the number of SMFS file handles is a limited resource (approx 16).

Therefore, FM designers should not keep SMFS file handles. Instead, only use SMFS to back up the keys.

Keep the keys in normal memory while the FM is running. Restore the keys from SMFS during the FM
initialization by opening/reading and closing the SMFS file. When changes are made to the keys,
open/write/close the SMFS file to back up the changes.

Cprov Function Patching
Downloading bad FM code into the HSM could make the device unusable. Patching functions such asC_
Initalize, C_OpenSession, C_Login and C_VerifyXXXmust be done with extreme care.

One technique is to put safety switches in the startup function, as seen in the sample FM "safedebug" on
page 39.

FMMessage Dispatching
FM Message Dispatching support allows for more than one request buffer and reply buffer to be presented to
the HSM. The message dispatch layer provides scatter-gather support, to combine all the request buffers into
a single data buffer and send it to the HSM. The reply data is treated the same way, but in reverse; the data is
scattered into multiple reply buffers. This feature can be very useful when information sent to the HSM and
information received from the HSM are kept in different variables and / or buffers.

The scatter-gather operation on the reply buffers can behave in an unintuitive manner when the initial buffers
are of variable length. The device driver will start filling the host-side initial buffers with the reply data, and it will
not place any data into subsequent buffers until the current one is completely filled. This means the reply buffer
fields may not contain the expected values when the amount of data placed in a variable-length buffer is less
than the maximum length of the buffer.

For example, if two reply buffers of 40 bytes each are passed to the message dispatch layer, but the actual
data to be returned in each buffer is only 32 bytes, the first 40-byte buffer will be filled with 32 bytes of data
meant for the first buffer and 8 bytes of data meant for the second buffer. The second reply buffer of 40 bytes
will only contain 26 bytes of data.

There are two possible ways to handle this:

1. After receiving the reply, realign the data in the buffers. The order of realignment must be from the last
buffer to the first. In order to implement this, the reply data in its entirety must contain enough information to
determine the length of each reply block.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 30

Chapter 4: FM Development

2. Always merge the reply buffers to a single block before dispatching the request, by allocating another block
and moving data from the allocated buffer to the caller’s reply buffers. This approach makes the code more
reliable.

Handling Host Processes
The FM SDK allows an FM developer to determine the identity of processes sending messages to the HSM.

The functions FM_GetCurrentPid and FM_GetCurrentOid allow you to know what process is sending the
current message. You must use a combination of PID and OID to uniquely identify a process; i.e. if two callers
have the same PID but different OIDs, they should be seen by the FM as different processes.

If your Functionality Module supports the concept of a user login, you will need to track which host processes
have logged in.

Therefore, you can remember which process has logged in by storing the PID and the OID as the process
successfully authenticates. When a process sends a message that requires authentication, you can check to
see if the process is in the list of authenticated processes.

The Cryptoki system always uses the PID/OID to determine if a session handle or object handle is valid for the
calling process.

Therefore, if the FM makes Cryptoki calls while processing a request, and it is using a session handle obtained
earlier from a different request, there is a possibility that the Cryptoki call with fail with a CKR_CRYPTOKI_
NOT_INITIALIZED error.

This occurs because Process A calls the FM, which callsC_Initialize and opens a Cryptoki session. Later,
Process B calls the FM and the FM tries to use the session handle. The Cryptoki will not recognise Process B.
To overcome this problem, you may want to modify the PID and OID to a constant value that the underlying
Cryptoki sees by using the FM_SetCurrentPid and FM_SetCurrentOid calls prior to making any Cryptoki
calls.

The value –1 for PID and OID is a suitable choice for this purpose.

Memory Alignment Issues
The PowerPC processor in the SafeNet ProtectServer Network HSM and SafeNet ProtectServer PCIe HSM
does not require fully aligned memory access, but unaligned access incurs a performance cost.

Memory Endian Issues
The processor in SafeNet ProtectServer PCIe HSM is big endian, and the legacy PSI-E and PSG processors
are little endian.

It is recommended that FM developers use the provided endian macros to encode all messages in network
byte order. By using the endian macros on both host and FM, endian differences between host and HSM are
not an issue.

The utility endian macros are provided in the SafeNet ProtectToolkit-C header file endyn.h.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 31

CHAPTER 5:
Setting up an MSYS environment and cross-
compiler

This chapter provides instructions on how to set up an MSYS environment with a cross-compiler that is
appropriate for the PCIe hardware, and configuring the environment to correctly build the FM binaries.

These instructions have been adapted from http://www.mingw.org/wiki/HostedCrossCompilerHOWTO

The process includes these general steps:

1. Download the required binaries and source code (See "DownloadMinGW and the toolchain source
code" below).

2. Build the cross-compiler (See "Build and install the cross-compiler" on the next page).
3. Add the ProtectServer paths to the MSYS environment (See "Set theMSYS environment to include the

FMDIR and CPROVDIR directories" on page 35).

DownloadMinGW and the toolchain source code
Download the following files:

Filename Source
file

Location

binutils-
2.26.tar.gz

binutils
2.26

http://ftp.gnu.org/gnu/binutils/

gcc-5.3.0.tar.gz gcc 5.3.0 http://ftp.gnu.org/gnu/gcc/gcc-5.3.0/

newlib-
2.4.0.tar.gz

newlib
2.4.0

https://sourceware.org/newlib/
Follow the "Download" link and find the source snapshots in the newlib ftp
directory.

Extract the binutils, gcc and newlib source files into the same folder. This will be referred to as the%SRC%
folder. Ensure that the%SRC% path has no spaces.

Go to: http://www.mingw.org/ or https://sourceforge.net/projects/mingw/ to download MinGW.

Install MinGW in the default directory (C:\MinGW) or a directory of your choice. This directory will be referred
to as%MINGW_HOME%.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 32

http://www.mingw.org/wiki/HostedCrossCompilerHOWTO
http://ftp.gnu.org/gnu/binutils/
http://ftp.gnu.org/gnu/gcc/gcc-5.3.0/
https://sourceware.org/newlib/
http://www.mingw.org/
https://sourceforge.net/projects/mingw/

Chapter 5: Setting up an MSYS environment and cross-compiler

NOTE If you install MinGW in another directory, ensure that the path does not contain
spaces. For the automated scripts to work, the%MINGW_HOME% environment variable
must also be set to the install directory.

Build and install the cross-compiler
There are two options for this process:

> run the provided script that builds and installs the cross-compiler and sets the MinGWenvironment, or

> complete the steps manually by following the instructions below.

Automated cross-compiler build
1. Copy the files crossc.cmd and crossgcc.mak into the%SRC% folder.

2. Run crossc.cmd from a command prompt.

NOTE If you installed MinGW in another directory other than the default (C:\MinGW), set
the%MINGW_HOME% environment variable to that path before running the script.

Manual cross-compiler build
1. Using either the MinGWGUI or the CLI, install the following packages:

• mingw32-base

• mingw32-gcc-g++

• mingw-developer-toolkit

• mpc-dev

• mpfr-dev

• gmp-dev

Using the CLI:

%MINGW_HOME%\bin\mingw-get install mingw32-base mingw32-gcc-g++ mingw-
developer-toolkit mpc-dev mpfr-dev gmp-dev

2. Go to the%MINGW_HOME%\msys\1.0\bin directory and run bash -c 'mount --replace "%MINGW_
HOME%" /mingw'.
cd %MINGW_HOME%\msys\1.0\bin

bash -c 'mount --replace "%MINGW_HOME%" /mingw'

3. Open anMSYS shell. You might want to create a shortcut on the desktop for easy access. This shell will be
used later on to compile the FM binaries.

%MINGW_HOME%\msys\1.0\msys.bat

4. Go to the%SRC% folder.

cd $SRC

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 33

Chapter 5: Setting up an MSYS environment and cross-compiler

5. Set up the build environment.
export TARGET=powerpc-eabi

export PREFIX=/mingw

6. Build the binaries by executing the followingmsys commands, in this order:
a. Build binutils:

tar xvf binutils-2.26.tar.gz

mkdir binutils_build

cd binutils_build

../binutils-2.26/configure --prefix=$PREFIX --target=$TARGET --disable-
nls --disable-shared --with-gcc --with-gnu-as --with-gnu-ld --with-
stabs --disable-multilib --enable-thmake all-gccreads

make all

make install

cd ..

b. Build gcc - C only:
tar xvf gcc-5.3.0.tar.gz

mkdir gcc_build

cd gcc_build

../gcc-5.3.0/configure --target=$TARGET --prefix=$PREFIX --with-
cpu=440fp --enable-languages=c,c++ --disable-multilib --with-gcc --
with-gnu-ld --with-gnu-as --with-stabs --disable-shared --enable-
threads --disable-nls --with-newlib

make all-gcc

make install-gcc

cd ..

c. Build newlib:
tar xvf newlib-2.4.0.tar.gz

mkdir newlib_build

cd newlib_build

../newlib-2.4.0/configure --target=$TARGET --prefix=$PREFIX

make

make install

cd ..

d. Build gcc - complete:
cd gcc_build

make all

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 34

Chapter 5: Setting up an MSYS environment and cross-compiler

make install

cd ..

Set theMSYS environment to include the FMDIR and CPROVDIR
directories

NOTE If you installed MinGW in another directory other than the default (C:\MinGW), set
the%MINGW_HOME% environment variable to the install directory you selected.

In the%FMDIR%\bin directory, run the setmsysenv.cmd script. This will add the environment variables
CPROVDIR and FMDIR to theMSYS environment, allowing you to compile the FM binaries. This only needs
to be done once.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 35

CHAPTER 6:
FM Samples

There are eight sample FMs provided with the SDK:

> "RSAENC" on page 38

> "XORSign" on page 38

> "restrict" on page 39

> "safedebug" on page 39

> "cipherobj" on page 39

> "smfs" on page 39

> "javahsmreset" on page 39

> "javahsmstate" on page 39

> "secfmenc" on page 40
Most have similar file layout.

The sample files included as part of the FM development kit consist of six sample FMs and two examples of
how to communicate with the HSM from Java.

Each of the FM samples are structured in a similar way. In each sample directory there is –

> Makefile: makefile to build host and HSM side code

> Fm: directory holding HSM side source

> Host: directory holding host side source
> Include: optional directory to hold common header files
Within the FM directory are files like these -

> hdr.c: header file for the production build of the FM binary image.

> sample.c: HSM side; main source for FM

> Makefile: Makefile to build the FM and the application

Within the host directory are files like this -

> stub_sample.c: host side stub (request encoder/decoders) (needed only for custom API)

> sample.c: main source for host side test application
> Makefile: Makefile to build the host-side application for emulation, or production.
The samples are built using gnumake and the provided Makefiles. When working on a platform that has a
native gnumake, such as Linux, you can use the systemmake command. When building the host part of the
samples on Windows, a copy of gnumake is provided in <fm_installation_path>\bin.
> Production build, no debug information in binaries:

make

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 36

Chapter 6: FM Samples

> Production build, with debug information in binaries:
make DEBUG=1

> Emulation build, no debug information in binaries:
make EMUL=1

> Emulation build, with debug information in binaries:
make EMUL=1 DEBUG=1

Binary files generated by the above variants are placed in different directories. Therefore, all variants can be
generated in the same directory. The directory names used are:

> obj-win32: Binaries for the production, non-debug host build on win32 environment
> obj-win32d: Binaries for the production, debug host build on win32 environment
> obj-linux-i386: Binaries for the production, non-debug host build on Linux/i386 environment
> obj-linux-i386d: Binaries for the production, debug host build on Linux/i386 environment
> obj-ppcfm: Binaries for the production, non-debug FM build for the HSM environment

> obj-ppcfmd: Binaries for the production, debug FM build for the HSM environment

> obj-linux-i386e: Binaries for the emulation, non-debug FM build on Linux/i386 environment

> obj-linux-i386ed: Binaries for the emulation, debug FM build on Linux/i386 environment

The binaries generated from each variant can be deleted using the target ‘clean’. E,g,:

make EMUL=1 clean
The build scripts generate the unsigned FM binary image when the HSM builds are performed. The binary
images are named ‘<samplename>.bin’. Since these images are not signed yet, it is not possible to download
them to the HSM. To use the key management scheme #1 (using self-signed FM download certificates), follow
the steps listed below:

1. Generate the key/certificate pair on the first token. From a command prompt, execute:

ctcert c –s0 –k –trsa –z2048 –lfm
This will generate a 2048 bit RSA key pair, and a self-signed certificate. The minimum key size for FM
signing should be 2048 bit. The labels of the generated keys are as shown below:

Private Key:fm (Pri)
Public Key:fm (Pub)
Certificate:fm

2. You must copy the certificate to the Admin Token. This can be done using by using ctcert to export the
certificate to a file.

ctcert x –lfm –s0 –ffmcert.crt
3. Then import the certificate to the Admin Token. For this operation, the password of the Admin Token is

required.

ctcert i –ffmcert.crt –s2 –lfm
4. You must mark the certificate as “Trusted”. This can be done using the ctcert utility with the ‘t’ command

line option.

ctcert t –lfm –s2

Please refer to the SafeNet ProtectToolkit-C ProgrammingGuide for a full account of the ctcert utility.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 37

Chapter 6: FM Samples

5. Now, the binary image can be signed usingmkfm. In the directory where the binary image is generated,
execute the following command:

mkfm –k “<TokenLabel>/<fm (Pri)>” -fsampleN –osampleN.fm
where <TokenLabel> is the label of the token in Slot 0, <fm (Pri)> is the label of the private signing key that
was previously generated and sampleN is the binary image of the sample FM being signed. This will
generate a signed FM binary image, named “sampleN.fm”. This command requires the user password of
the token to be entered.

6. Exit from all cryptoki applications that are still active, and download the FM image to the HSM. Execute:

ctconf –b<fm> –jsampleN.fm
where <fm> is the name of the certificate in Admin Token used to verify the FM binary image integrity. After
a while, the command will report a successful download. The download operation can be checked by
executing the command:

ctconf –s

and ensuring that the FM name is correct, and the FM status is “Enabled”.
When running FMs in emulation mode, the HSM Software Emulation library is used and the above steps for
signing and installing the FM do not apply. The emulated HSM does require basic initialization using the same
steps as a real HSM, as described in the SafeNet ProtectToolkit-C Administration Guide.

1. Initialize the slot (0):
ctconf –n0

2. Initialize the slot's user PIN:
ctkmu p –s0

3. List slots:
ctkmu l

RSAENC
This sample demonstrates how custom functionality can be implemented with use of the RSA_Enc command.
This command combines several PKCS#11 commands such asC_Initialize, C_OpenSession, C_
FindObjectsInit, C_FindObjects, C_EncryptInit, C_Encrypt, C_CloseSession in one single call.
Note that for running this sample TEST_RSA_KEYRSA key must be created. This may be achieved with the
following command:
ctkmu c -nTEST_RSA_KEY -trsa -z1024 –aEDSUPT

XORSign
This sample demonstrates the addition of a new signing mechanism by patching existing PKCS#11 digest
functions.

The newmechanism is bitwise exclusive ORwith name CKM_XOR.

Execute the test app with –g to generate the required key:

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 38

Chapter 6: FM Samples

xortest –g

restrict
This sample demonstrates restricting access to slot 0 by patching existing PKCS#11 C_OpenSession
function.

safedebug
This sample demonstrates how to use SMFS storage to determine if your FM should abort its startup.

cipherobj
This sample demonstrates how to access primitive cryptographic services by using the Cipher Object system.
Note that to run this sample, TEST_DES3_KEYDES3 key must be created with the following command:
ctkmu c -nTEST_DES3_KEY -tdes3 –aEDSVT

The key must be marked as sensitive (-T) as this example also demonstrates the CT_SetPrivilegeLevel
(PRIVILEGE_OVERRIDE) API.

smfs
This sample demonstrates how to access the Secure Memory File System.

javahsmreset
This function does not make FMs.

This is a JAVA version of the function hsmreset, functionally identical to the ‘C’ hsmreset. This function
demonstrates how to interface to the Java MD API (JHSM).Only the Java source code is provided. It is
recommended that the THREADS_FLAG environment variable be set to native for Unix/Linux platforms.

javahsmstate
This function does not make FMs.

This is a Java version of the function hsmstate, functionally identical to the ‘C’ hsmstate. This function
demonstrates how to interface to the Java MD API (JHSM). Only the Java source code is provided. It is
recommended that the THREADS_FLAG environment variable is set to native for Unix/Linux platforms.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 39

Chapter 6: FM Samples

secfmenc
This sample demonstrates the use of the FMSC_SendReceive() function to call custom FMs using the
Cryptoki library (see "Extra Functions" in the SafeNet ProtectToolkit ProgrammingGuide). It can perform RSA
as well as DES3 encryption.

To run an RSA test, you must first have an RSA key with the label TEST_RSA_KEY stored on the HSM.

To run a DES3 test, you must first have a DES3 key with the label TEST_DES3_KEY stored on the HSM.

NOTE This sample will not work in Emulation mode, as the FMSC_SendReceive() function
is not supported.

Emulation builds and test steps
C:> make EMUL=1
C:> cdfm/obj-linux-i386e
C:> sampleN

Adapters builds and test steps
C:> make
C:> cd obj-armfm
C:> mkfm –k devel_key -f sampleN –o sampleN.fm
C:> ctconf –j sampleN.fm
C:> sampleN

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 40

CHAPTER 7:
Building sample FMs in emulation mode on
Windows

This chapter provides instructions on how to compile the sample FM projects in the Windows environment.

The process consists of the following steps:

1. Copy the samples and emulation source folders.
2. Set the environment variables.
3. Compile the binaries.

Copy the samples and emulation source folders
Microsoft recommends against creating and editing files in the Program Files folder. To avoid running into
issues with the UAC, copy the samples folder and the emul folder to a separate folder. These will be referred to
as the%SRC% and%EMUL% folders respectively.

Set the environment variables
1. Open a Visual Studio Command Prompt to load the Visual studio compiler.
2. Run the fmsdkvars.bat file found in the FM-SDK installation folder to set the%FMDIR% and

%CPROVDIR% environment variables.

%FMDIR%\bin\fmsdkvars.bat

3. Set the%OUTDIR% environment variable. This is the folder where the emulation libraries will be created.

set OUTDIR=c:\fmdemo

4. Set the%FM_BIN% environment variable. This is the name of the FM emulation library.

set FM_BIN=fm-restrict

Compile the binaries
1. Navigate to the sample folder's FM directory (e.g.%SRC%\restrict\fm) and run nmake -f nt.mak

cd %SRC%\restrict\fm

nmake -f nt.mak

2. Navigate to the sample folder's host directory (e.g.%SRC%\restrict\host) and run nmake -f nt.mak
cd %SRC%\restrict\host

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 41

Chapter 7: Building sample FMs in emulation mode on Windows

nmake -f nt.mak

3. Navigate to the%EMUL% folder and run nmake -f nt.mak
cd %EMUL%

nmake -f nt.mak

4. Navigate to the%OUTDIR% folder:

cd %OUTDIR%

5. In there, you should have the following files:

• %FM_BIN%.dll
• %CLIENT_BIN%.exe
• cryptoki.dll
• ethsm.dll

6. Run the executable to test the FM.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 42

CHAPTER 8:
Utilities Reference

This section contains information pertaining to the following utilities:

> "CTCERT" below

> "CTCONF" below

> "CTFM" below

> "MKFM" below

CTCERT
The ctcert utility is provided as a part of the SafeNet ProtectToolkit-C package. Refer to the SafeNet
ProtectToolkit-C AdministrationManual for details.

CTCONF
The ctconf utility is provided as a part of the SafeNet ProtectToolkit-C package. Refer to the SafeNet
ProtectToolkit-C AdministrationManual for details.

CTFM
The ctfm utility is provided as a part of the SafeNet ProtectToolkit-C package. Refer to the SafeNet
ProtectToolkit-C AdministrationManual for details.

MKFM

Synopsis
mkfm -f<filename> -k<key> -o<filename> [-3]

Description
Themkfm utility is used to time-stamp, hash, and sign an FM binary image

Options
The following options are supported:

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 43

Chapter 8: Utilities Reference

Option Description

–f<filename> --input-file=<filename> This specifies the relative or full path to the FM binary
image.

–k<key> --private-key=<key> This is the name of the private key, which is going to be used to
sign the FM image. The format of the key is “TokenName(PIN)/KeyName”, or
“TokenName/KeyName”. The private keys stored in admin token cannot be used with
this utility.

–o<filename> --output-file=<filename> This specifies the relative or full path to the downloadable
FM image.

-3 Specify this option if you want to sign a new FMwith an existing certificate that was
created for use with Protect Processor Orange 3 (SafeNet ProtectToolkit 3).

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 44

CHAPTER 9:
Cipher Object

The PKCS #11 API provides a standard method for accessing and managing keys, and performing
cryptographic operations. Providing a system-independent layer, however, introduces a considerable amount
of overhead.

SafeNet ProtectToolkit provides an internal API which bypasses the PKCS #11 subsystem to perform high-
performance cryptographic functions.

The Cipher Object Access API
Cryptographic operations require that you obtain a pointer to an instance of a cipher object or a hash object. A
cipher object may be used to encrypt, decrypt, sign (or MAC), or verify data. A hash object is used to perform a
digest operation.

There is a function for obtaining an instance of each of these objects. This chapter provides details on Cipher
Objects. See "HashObject" on page 86 for information on Hash Objects.

> "FmCreateCipherObject" on page 47

Cipher Object Functions
The Cipher Object is a wrapper that provides a common interface for all supported cryptographic algorithms. It
is implemented as a structure containing the addresses of functions, as well as a data pointer that keeps the
internal state of the instance. The contents of the data field are private, and should not be accessed or modified
externally.

In this section, the following functions in the cipher object are specified:

> "New" on page 49

> "Free" on page 50

> "GetInfo" on page 51

> "EncInit" on page 52

> "EncryptUpdate" on page 53

> "EncryptFinal" on page 54

> "DecInit" on page 55

> "DecryptUpdate" on page 56

> "DecryptFinal" on page 57

> "SignInit" on page 58

> "SignUpdate" on page 59

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 45

Chapter 9: Cipher Object

> "SignFinal" on page 60

> "SignRecover" on page 61

> "VerifyInit" on page 62

> "VerifyUpdate" on page 63

> "VerifyFinal" on page 64

> "VerifyRecover" on page 65

> "Verify" on page 67

> "LoadParam" on page 68

> "UnloadParam" on page 69

> "Config (Obsolete)" on page 70

> "Status (Obsolete)" on page 70

> "EncodeState (Obsolete)" on page 71

> "DecodeState (Obsolete)" on page 71

Algorithm-Specific Cipher Information
This section contains the following descriptions:

> "AES Cipher Object" on page 72

> "DES Cipher Object" on page 73

> "Triple DES Cipher Object" on page 75

> "ECDSA Cipher Object" on page 77

> "IDEA Cipher Object" on page 80

> "RC2Cipher Object" on page 81

> "RC4Cipher Object" on page 82

> "RSA Cipher Object" on page 83

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 46

Chapter 9: Cipher Object

FmCreateCipherObject

Synopsis
#include “fmciphobj.h”
CipherObj * FmCreateCipherObject(FMCO_CipherObjIndex index);

Description
This function constructs and initializes a Cipher Object of the specified type.

Parameters

Option Description

index The type of cipher object requested. It can have the following values (defined in fmciphobj.h):
> FMCO_IDX_AES: Implementation of the AES (Rijndael) algorithm
> FMCO_IDX_CAST: Implementation of the CAST algorithm
> FMCO_IDX_IDEA: Implementation of the IDEA algorithm
> FMCO_IDX_RC2: Implementation of the RC2 algorithm
> FMCO_IDX_RC4: Implementation of the RC4 algorithm
> FMCO_IDX_DES: Implementation of the single DES algorithm
> FMCO_IDX_TRIPLEDES: Implementation of the triple DES (with either double or triple length keys)

algorithm
> FMCO_IDX_DSA: Implementation of the DSA algorithm (signing and verification only)
> FMCO_IDX_ECDSA: Implementation of the ECDSA algorithm (signing and verification only)
> FMCO_IDX_HMACMD2: Implementation of the HMAC construct usingMD2 hash algorithm (signing

and verification only)
> FMCO_IDX_HMACMD5: Implementation of the HMAC construct usingMD5 hash algorithm (signing

and verification only)
> FMCO_IDX_HMACSHA1: Implementation of the HMAC construct using SHA-1 hash algorithm

(signing and verification only)
> FMCO_IDX_HMACRMD128: Implementation of the HMAC construct using RIPEMD-128 hash

algorithm (signing and verification only)
> FMCO_IDX_HMACRMD160: Implementation of the HMAC construct using RIPEMD-160 hash

algorithm (signing and verification only)
> FMCO_IDX_RSA: Implementation of the RSA algorithm (only single part operations supported)
This list is correct at time of writing; the actual number of objects supported depends on the HSM firmware
version.

Return Value
The address of the cipher object is returned. If the system does not have enough memory to complete the
operation, NULL is returned.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 47

Chapter 9: Cipher Object

Comments
The returned Cipher Object should be freed by calling its Free() function (See "Free" on page 50).
The Cipher Objects may have some of the function’s addresses set to NULL to indicate that they are not
implemented. It is recommended that the function address be checked before using these functions. Please
consult the list under "Cipher Object" on page 45 for details.

NOTE It is the Operating System firmware that provides the CipherObject – not the FM SDK.
As new versions of OS firmware are developed and released, more Cipher Objects may be
added to the list of supported algorithms.

A firmware upgrade may be required to obtain a particular Cipher Algorithm.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 48

Chapter 9: Cipher Object

New

Synopsis
#include “fmciphobj.h”
struct CipherObj * (*New)(struct CipherObj * ctx);

Description
Creates a new instance of the same type of the cipher object. This function can be used as a generic means to
clone a cipher object if two cipher operations must be carried out in parallel.

Parameters

Parameter Description

ctx The address of an existing cipher object. This parameter must not be NULL.

Return Value
Address of a new instance of the Cipher Object. If the system does not have enough memory to complete the
operation, NULL is returned.

Comments
The returned Cipher Object should be freed by calling its Free() function (see "Free" on the next page).

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 49

Chapter 9: Cipher Object

Free

Synopsis
#include “fmciphobj.h”
int (*Free)(struct CipherObj * ctx);

Description
This function must be used for all cipher objects that are no longer required to free all of its resources. The
cipher object must not be used after this function returns.

Parameters

Parameter Description

ctx The address of the cipher object to be freed.

Return Value
None

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 50

Chapter 9: Cipher Object

GetInfo

Synopsis
#include “fmciphobj.h”
int (*GetInfo)(struct CipherObj * ctx, struct CipherInfo * info);

Description
This function can be called to obtain the values of the algorithm-dependent parameters of a cipher object.

Parameters

Parameter Description

ctx The address of a cipher object.

info The address of the info structure that will contain the algorithm information when the function returns.

Return Value
0: Operation completed successfully.

Otherwise: there was an error – this should not happen.

Comments
The info structure is defined as (from fmciphobj.h):
struct CipherInfo {
char name[32];
unsigned int minKeyLength;
unsigned int maxKeyLength;
unsigned int blockSize;
unsigned int defSignatureSize;
struct CipherObj * ciph;
};

The field meanings are:

> name: Name of the cipher algorithm. Zero terminated.

> minKeyLength: Minimum key length, in number of bytes

> maxKeyLength: Maximum key length, in number of bytes

> blockSize: Cipher block size, in number of bytes

> defSignatureSize: Default Signature size, in number of bytes

> ciph: The address of the cipher object (obsolete, and not filled in by most cipher objects).

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 51

Chapter 9: Cipher Object

EncInit

Synopsis
#include “fmciphobj.h”
int (*EncInit)(struct CipherObj * ctx,
int mode,
const void * key, unsigned int klength,
const void * param, unsigned int plength);

Description
This function initializes the cipher object for an encrypt operation. It must be called prior to any
EncryptUpdate or EncryptFinal calls.

Parameters

Parameter Description

ctx The address of a cipher object instance.

mode The encrypt mode. Different algorithms support different values for this parameter. Please consult
"Algorithm-Specific Cipher Information" on page 46 for the possible values for a certain algorithm.

key The address of a buffer containing the key value. The encoding of the key is algorithm-dependent.
However, for most block ciphers, this buffer contains the key value. Please consult "Algorithm-Specific
Cipher Information" on page 46 for key encoding information.

klength Number of bytes in the key buffer.

param The address of the buffer containing various parameters for the encrypt operation. The contents and the
encoding of this buffer are algorithm andmode dependent. However, for most block ciphers this buffer
contains the IV when one of the CBC modes is used. Please consult "Algorithm-Specific Cipher
Information" on page 46 for key encoding information.

plength Number of bytes in the param buffer.

Return Value
0: The operation was successful.

Otherwise: An error occurred.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 52

Chapter 9: Cipher Object

EncryptUpdate

Synopsis
#include “fmciphobj.h”
int (*EncryptUpdate)(struct CipherObj * ctx,
void * tgt, unsigned int tlength, unsigned int * plen,
const void * src, unsigned int length);

Description
This function is used to encrypt some data. It can be used in two ways: discovering the output buffer length, or
performing encryption.

If the target buffer address, tgt, is NULL, then the variable pointed to by plen is updated to contain the length of
the output that is required to perform the operation.

If the target buffer address is not NULL, then the currently buffered data and the input buffer contents are
combined, and as many blocks as possible are encrypted. The result of the encrypted blocks are placed in the
output buffer. If there are any remaining bytes, they are internally buffered. The number of bytes placed in the
target buffer is also written to the variable pointed by plen.

Parameters

Parameter Description

ctx The address of a cipher object instance.

tgt The address of the output buffer. It may be set to NULL for output buffer length estimation.

tlength Total number of bytes available in the output buffer.

plen Address of a variable that will receive the number of bytes placed in the target buffer. This variable
must not be NULL.

src Address of the buffer containing the input data.

length Number of bytes in the src buffer.

Return Value
0: Operation completed successfully.

Otherwise: There was an error.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 53

Chapter 9: Cipher Object

EncryptFinal

Synopsis
#include “fmciphobj.h”
int (*EncryptFinal)(struct CipherObj * ctx,
void * tgt, unsigned int tlength, unsigned int * plen);

Description
This function must be called to finish an encryption operation. It can be used for either discovering the target
buffer length, or for actually performing the operation.

If the target buffer address, tgt, is NULL, then the variable pointed to by plen is updated to contain the length of
the output that is required to perform the operation.

If the target buffer address is not NULL, then the currently buffered data is padded (if the mode permits it), and
encrypted. The result is placed in the tgt buffer. The number of bytes placed in the target buffer is also written
to the variable pointed by plen. If the current mode does not allow padding, and there is buffered data, then an
error is returned.

Parameters

Parameter Description

ctx The address of a cipher object instance.

tgt The address of the output buffer. It may be set to NULL for output buffer length estimation.

tlength Total number of bytes available in the output buffer.

plen Address of a variable that will receive the number of bytes placed in the target buffer. This variable
must not be NULL.

Return Value
0: Operation completed successfully.

Otherwise: There was an error.

Comments
This function finalizes the encryption context. EncInit()must be called again to encrypt more data, even when
the key is the same.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 54

Chapter 9: Cipher Object

DecInit

Synopsis
#include “fmciphobj.h”
int (*DecInit)(struct CipherObj * ctx,
int mode,
const void * key, unsigned int klength,
const void * param, unsigned int plength);

Description
This function initializes the cipher object for a decrypt operation. It must be called prior to anyDecryptUpdate
or DecryptFinal calls.

Parameters

Parameter Description

ctx The address of a cipher object instance.

mode The encrypt mode. Different algorithms support different values for this parameter. Please consult
"Algorithm-Specific Cipher Information" on page 46 for the possible values for a certain algorithm.

key The address of a buffer containing the key value. The encoding of the key is algorithm-dependent.
However, for most block ciphers, this buffer contains the key value. Please consult "Algorithm-Specific
Cipher Information" on page 46 for key encoding information.

klength Number of bytes in the key buffer.

param The address of the buffer containing various parameters for the encrypt operation. The contents and the
encoding of this buffer are algorithm andmode dependent. However, for most block ciphers this buffer
contains the IV when one of the CBC modes is used. Please consult "Algorithm-Specific Cipher
Information" on page 46 for key encoding information.

plength Number of bytes in the param buffer.

Return Value
0: The operation was successful.

Otherwise: An error occurred.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 55

Chapter 9: Cipher Object

DecryptUpdate

Synopsis
#include “fmciphobj.h”
int (*DecryptUpdate)(struct CipherObj * ctx,
void * tgt, unsigned int tlength, unsigned int * plen,
const void * src, unsigned int length);

Description
This function is used to decrypt some data. This function can be used in two ways: discovering the output buffer
length, or performing decryption.

If the target buffer address, tgt, is NULL, then the variable pointed to by plen is updated to contain the length of
the output that is required to perform the operation.

If the target buffer address is not NULL, then the currently buffered data and the input buffer contents are
combined, and as many blocks as possible are decrypted. The result of the decrypted blocks are placed in the
output buffer. If there are any remaining bytes, they are internally buffered. The number of bytes placed in the
target buffer is also written to the variable pointed by plen.

Parameters

Parameter Description

ctx The address of a cipher object instance.

tgt The address of the output buffer. It may be set to NULL for output buffer length estimation.

tlength Total number of bytes available in the output buffer.

plen Address of a variable that will receive the number of bytes placed in the target buffer. This variable
must not be NULL.

src Address of the buffer containing the input data.

length Number of bytes in the src buffer.

Return Value
0: Operation completed successfully.

Otherwise: There was an error.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 56

Chapter 9: Cipher Object

DecryptFinal

Synopsis
#include “fmciphobj.h”
int (*DecryptFinal)(struct CipherObj * ctx,
void * tgt, unsigned int tlength, unsigned int * plen);

Description
This function must be called to finish a decryption operation. It can be used for either discovering the target
buffer length, or for actually performing the operation.

If the target buffer address, tgt, is NULL, then the variable pointed to by plen is updated to contain the length of
the output that is required to perform the operation.

If the target buffer address is not NULL, and the mode is padded mode, the final block is decrypted and the
padding bytes are removed before they are placed in the tgt buffer. If there is not exactly one block of data in
the buffer, an error is returned.

Parameters

Parameter Description

ctx The address of a cipher object instance.

tgt The address of the output buffer. It may be set to NULL for output buffer length estimation.

tlength Total number of bytes available in the output buffer.

plen Address of a variable that will receive the number of bytes placed in the target buffer. This variable
must not be NULL.

Return Value
0: Operation completed successfully.

Otherwise: There was an error.

Comments
This function finalizes the decryption context.DecInit()must be called again to decrypt more data, even when
the key is the same.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 57

Chapter 9: Cipher Object

SignInit

Synopsis
#include “fmciphobj.h”
int (*SignInit)(struct CipherObj * ctx,
int mode,
const void * key, unsigned int klength,
const void * param, unsigned int plength);

Description
This function initializes the cipher object for a signature (MAC for block ciphers) operation. It must be called
prior to any SignUpdate, SignFinal or SignRecover calls.

Parameters

Parameter Description

ctx The address of a cipher object instance.

mode The encrypt mode. Different algorithms support different values for this parameter. Please consult
"Algorithm-Specific Cipher Information" on page 46 for the possible values for a certain algorithm.

key The address of a buffer containing the key value. The encoding of the key is algorithm-dependent.
However, for most block ciphers, this buffer contains the key value. Please consult "Algorithm-Specific
Cipher Information" on page 46 for key encoding information.

klength Number of bytes in the key buffer.

param The address of the buffer containing various parameters for the encrypt operation. The contents and the
encoding of this buffer are algorithm andmode dependent. However, for most block ciphers this buffer
contains the IV when one of the CBC modes is used. Please consult "Algorithm-Specific Cipher
Information" on page 46 for key encoding information.

plength Number of bytes in the param buffer.

Return Value
0: The operation was successful.

Otherwise: An error occurred.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 58

Chapter 9: Cipher Object

SignUpdate

Synopsis
#include “fmciphobj.h”
int (*SignUpdate)(struct CipherObj * ctx,
const void * src, unsigned int length);

Description
This function can be used to update a multi-part signing or MAC operation.

Parameters

Parameter Description

ctx The address of a cipher object instance.

src Address of the buffer containing the input data.

length Number of bytes in the src buffer.

Return Value
0: Operation completed successfully.

Otherwise: there was an error.

Comments
Usually, only block cipher algorithms implement this function.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 59

Chapter 9: Cipher Object

SignFinal

Synopsis
#include “fmciphobj.h”
int (*SignFinal)(struct CipherObj * ctx,
void * tgt, unsigned int tlength, unsigned int * plen);

Description
This function must be called to finish a signing or MAC operation. It can be used for either discovering the
target buffer length, or for actually performing the operation.

If the target buffer address, tgt, is NULL, then the variable pointed to by plen is updated to contain the length of
the output that is required to perform the operation.

If the target buffer address is not NULL, then the signing operation is completed, and the signature is placed in
the output buffer.

Parameters

Parameter Description

ctx The address of a cipher object instance.

tgt The address of the output buffer. It may be set to NULL for output buffer length estimation.

tlength Total number of bytes available in the output buffer.

plen Address of a variable that will receive the number of bytes placed in the target buffer. This variable
must not be NULL.

Return Value
0: Operation completed successfully.

Otherwise: there was an error.

Comments
This function finalizes the signature context. SignInit()must be called again to sign more data, even when the
key is the same.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 60

Chapter 9: Cipher Object

SignRecover

Synopsis
#include “fmciphobj.h”
int (*SignRecover)(struct CipherObj * ctx,
void * tgt, unsigned int tlength, unsigned int * plen,
const void * src, unsigned int length);

Description
This function implements a single part signing or MAC operation. It can be used for either discovering the
target buffer length, or for actually performing the operation.

If the target buffer address, tgt, is NULL, then the variable pointed to by plen is updated to contain the length of
the output that is required to perform the operation.

If the target buffer address is not NULL, then the signing operation is performed, and the signature is placed in
the output buffer.

Parameters

Parameter Description

ctx The address of a cipher object instance.

tgt The address of the output buffer. It may be set to NULL for output buffer length estimation.

tlength Total number of bytes available in the output buffer.

plen Address of a variable that will receive the number of bytes placed in the target buffer. This variable
must not be NULL.

src Address of the buffer containing the input data.

length Number of bytes in the src buffer.

Return Value
0: The operation was successful.

Otherwise: an error occurred.

Comments
Most block cipher algorithm cipher objects do not implement this function.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 61

Chapter 9: Cipher Object

VerifyInit

Synopsis
#include “fmciphobj.h”
int (*VerifyInit)(struct CipherObj * ctx,
int mode,
const void * key, unsigned int klength,
const void * param, unsigned int plength);

Description
This function initializes the cipher object for a signature or MAC verification operation. It must be called prior to
any VerifyUpdate, VerifyFinal, Verify or VerifyRecover calls.

Parameters

Parameter Description

ctx The address of a cipher object instance.

mode The encrypt mode. Different algorithms support different values for this parameter. Please consult
"Algorithm-Specific Cipher Information" on page 46 for the possible values for a certain algorithm.

key The address of a buffer containing the key value. The encoding of the key is algorithm-dependent.
However, for most block ciphers, this buffer contains the key value. Please consult "Algorithm-Specific
Cipher Information" on page 46 for key encoding information.

klength Number of bytes in the key buffer.

param The address of the buffer containing various parameters for the encrypt operation. The contents and the
encoding of this buffer are algorithm andmode dependent. However, for most block ciphers this buffer
contains the IV when one of the CBC modes is used. Please consult "Algorithm-Specific Cipher
Information" on page 46 for key encoding information.

plength Number of bytes in the param buffer.

Return Value
0: The operation was successful.

Otherwise: an error occurred.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 62

Chapter 9: Cipher Object

VerifyUpdate

Synopsis
#include “fmciphobj.h”
int (*VerifyUpdate)(struct CipherObj * ctx,
const void * src, unsigned int length);

Description
This function can be used to update a multi-part signature or MAC verification operation.

Parameters

Parameter Description

ctx The address of a cipher object instance.

src Address of the buffer containing the input data.

length Number of bytes in the src buffer.

Return Value
0: Operation completed successfully.

Otherwise: there was an error.

Comments
Usually, only block cipher algorithms implement this function.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 63

Chapter 9: Cipher Object

VerifyFinal

Synopsis
#include “fmciphobj.h”
int (*VerifyFinal)(struct CipherObj * ctx,
const void * sig, unsigned int slength,
void * tgt, unsigned int tlength, unsigned int * plen);

Description
This function must be called to finish a signature or MAC verification operation. It can be used for either
discovering the target buffer length, or for actually performing the operation.

If the target buffer address, tgt, is NULL, then the variable pointed to by plen is updated to contain the length of
the output that is required to perform the operation.

If the target buffer address is not NULL, then the verification operation is completed. In addition to the
verification, the recovered signature is placed in the output buffer.

Parameters

Parameter Description

ctx The address of a cipher object instance.

sig The address of the buffer containing the signature or theMAC.

slength Number of bytes in the sig buffer.

tgt The address of the output buffer. It may be set to NULL for output buffer length estimation.

tlength Total number of bytes available in the output buffer.

plen Address of a variable that will receive the number of bytes placed in the target buffer. This variable
must not be NULL.

Return Value
0: The signature or MACwas correct.

Otherwise: there was an error, or the signature or MACwas incorrect.

Comments
This function finalizes the verification context. VerifyInit()must be called again to verify more data, even when
the key is the same.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 64

Chapter 9: Cipher Object

VerifyRecover

Synopsis
#include “fmciphobj.h”
int (*VerifyRecover)(struct CipherObj * ctx,
const void * sig, unsigned int slength,
void * tgt, unsigned int tlength, unsigned int * plen,
const void * src, unsigned int length);

Description
This function implements a single-part signature or MAC verification operation with recovery. It can be used for
either discovering the target buffer length, or for actually performing the operation.

If the target buffer address, tgt, is NULL, then the variable pointed to by plen is updated to contain the length of
the output that is required to perform the operation.

If the target buffer address is not NULL, then the verification operation is performed. In addition to the
verification, the recovered signature is placed in the output buffer.

Parameters

Parameter Description

ctx The address of a cipher object instance.

sig The address of the buffer containing the signature or theMAC.

slength Number of bytes in the sig buffer.

tgt The address of the output buffer. It may be set to NULL for output buffer length estimation.

tlength Total number of bytes available in the output buffer.

plen Address of a variable that will receive the number of bytes placed in the target buffer. This variable
must not be NULL.

src Address of the buffer containing the input data.

length Number of bytes in the src buffer.

Return Value
0: The operation was successful.

Otherwise: an error occurred.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 65

Chapter 9: Cipher Object

Comments
Most block cipher algorithm cipher objects do not implement this function.

This function finalizes the verification context. VerifyInit()must be called again to verify more data, even when
the key is the same.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 66

Chapter 9: Cipher Object

Verify

Synopsis
#include “fmciphobj.h”
int (*Verify)(struct CipherObj * ctx,
const void * sig, unsigned int slength,
const void * src, unsigned int length);

Description
This function implements a single-part signature or MAC verification operation without recovery. The return
value indicates whether the signature or MACwas correct.

Parameters

Parameter Description

ctx The address of a cipher object instance.

sig The address of the buffer containing the signature or theMAC.

slength Number of bytes in the sig buffer.

src Address of the buffer containing the input data.

length Number of bytes in the src buffer.

Return Value
0: The operation was successful.

Otherwise: an error occurred.

Comments
Most block cipher algorithm cipher objects do not implement this function.

This function finalizes the verification context. VerifyInit()must be called again to verify more data, even when
the key is the same.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 67

Chapter 9: Cipher Object

LoadParam

Synopsis
#include “fmciphobj.h”
int (*LoadParam)(struct CipherObj * ctx,
const void * param, unsigned int length);

Description
This function may be used to load the saved parameters of a cipher object. This function is used in conjunction
with the UnloadParam function.

Parameters

Parameter Description

ctx The address of a cipher object instance.

param The address of the buffer containing various parameters for the encrypt operation. The contents and the
encoding of this buffer are algorithm andmode dependent. However, for most block ciphers this buffer
contains the IV when one of the CBC modes is used. Please consult "Algorithm-Specific Cipher
Information" on page 46 for key encoding information.

length Number of bytes in the param buffer.

Return Value
0: The operation was successful.

Otherwise: an error occurred.

Comments
The LoadParam and UnloadParam functions are not very useful, as they do not encode the key value along
with the operational parameters.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 68

Chapter 9: Cipher Object

UnloadParam

Synopsis
#include “fmciphobj.h”
int (*UnloadParam)(struct CipherObj * ctx,
void * param, unsigned int length, unsigned int *plen);

Description
This function may be used to save the operational parameters of a cipher object. This function is used in
conjunction with the LoadParam function.

Parameters

Parameter Description

ctx The address of a cipher object instance.

param The address of the buffer containing various parameters for the encrypt operation. The contents and the
encoding of this buffer are algorithm andmode dependent. However, for most block ciphers this buffer
contains the IV when one of the CBC modes is used. Please consult "Algorithm-Specific Cipher
Information" on page 46 for key encoding information.

length Number of bytes in the param buffer.

plen Address of a variable that will receive the number of bytes placed in the param buffer. This variable
must not be NULL.

Return Value
0: The operation was successful.

Otherwise: an error occurred.

Comments
The LoadParam and UnloadParam functions are not very useful, as they do not encode the key value along
with the operational parameters.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 69

Chapter 9: Cipher Object

Config (Obsolete)

Synopsis
#include “fmciphobj.h”
int (*Config)(struct CipherObj * ctx, const void * parameters, unsigned int length);

Description
This function can be used to restore the configuration of a cipher object. It is used in conjunction with the
Status function.

Parameters

Parameter Description

ctx The address of a cipher object instance.

parameters The address of the buffer that contains the information returned from the Status function.

length Number of bytes in the parameters buffer.

Return Value
0: Operation was successful

Otherwise: There was an error.

Comments
This function is now obsolete, and is not implemented by any of the cipher objects.

Status (Obsolete)

Synopsis
#include “fmciphobj.h”
int (*Status)(struct CipherObj * ctx, void * parameters, unsigned int length);

Description
This function can be used to take a snapshot of the current configuration of the cipher object, which can be
used to restore it using the Config function.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 70

Chapter 9: Cipher Object

Parameters

Parameter Description

ctx The address of a cipher object instance.

parameters The address of the buffer that contains the configuration information.

length Number of bytes in the parameters buffer.

Return Value
0: Operation was successful

Otherwise: There was an error.

Comments
This function is now obsolete, and is not implemented by any of the cipher objects.

EncodeState (Obsolete)
This function definition is left for historical reasons. None of the Cipher objects implement this.

DecodeState (Obsolete)
This function definition is left for historical reasons. None of the Cipher objects implement this.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 71

Chapter 9: Cipher Object

AES Cipher Object
Operation Supported : Encrypt, Decrypt, Multi-part MAC, Multi-part MAC Verify

Key Encoding
Supports 16, 24 and 32 byte key value.

Encrypt/Decrypt Modes
The least significant nibble (4 bits) determines the operational mode.

Possible values:

> SYM_MODE_ECB (0)
Electronic Code Book (ECB) mode. It may be combined with a padding mode (see below).

> SYM_MODE_CBC (1)
Cipher Block Chaining (CBC) mode. It may be combined with a padding mode (see below).

PaddingMode
The most significant nibble defines the padding mode used.

Possible mode: SYM_MODE_PAD (0x90)
PKCS#1 padding is applied. This causes 1 to 8 bytes of padding to be added to the data. Note that the padding
is applicable to SYM_MODE_CBC only.

MACmodes
For MAC generation and verification, available modes include:

> SYM_MODE_MAC_3 (0)
Standard CBC

> SYM_MODE_MAC_GEN (1)
Standard CBCwith configurable MAC length

Encrypt/Decrypt Parameters
In SYM_MODE_CBC, the parameter buffer must contain the IV (16 bytes). In SYM_MODE_ECB, there are no
parameters.

MACParameters
When mode is SYM_MODE_MAC_GEN, parameter buffer contains at least 4 bytes, which is the little-endian
encoding of an integer. The integer value must contain a value from 1 to 8, indicating the number of bytes of
the final IV that will be used as the MAC. This is optionally followed by 8 bytes containing the IV.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 72

Chapter 9: Cipher Object

DESCipher Object

Operations Supported
Encrypt, Decrypt, Multi-Part MAC, and Multi-Part Verify.

Key encoding
Every byte contains 7 key bits, and 1 parity bit. The parity bit is the least significant bit in each byte. There is no
additional encoding of the key data. The key must be 8 bytes long.

Encrypt/Decrypt Modes
The least significant nibble (4 bits) determines the operational mode.

Possible values:

> SYM_MODE_ECB (0)
Electronic Code Book (ECB) mode. It may be combined with a padding mode (see below).

> SYM_MODE_CBC (1)
Cipher Block Chaining (CBC) mode. It may be combined with a padding mode (see below).

> SYM_MODE_CFB (2)
Cipher Feedback (64-bit) mode

> SYM_MODE_BCF (3)
Byte Cipher Feedback (8-bit CFB) mode

> SYM_MODE_OFB (4)
Output Feedback (64-bit) mode

> SYM_MODE_BOF (5)
Byte Output Feedback (8-bit OFB) mode

The most significant nibble defines the padding mode used.

Possible values:

> SYM_MODE_PADNONE (0x00)
No padding applied. Data must be a multiple of the block size (8 bytes).

> SYM_MODE_PADNULL (0x80)
0 to 7 bytes with value 0 is added to the data to extend it to be a multiple of block size.

> SYM_MODE_PADPKCS1 (0x90)
PKCS#1 padding is applied. This causes 1 to 8 bytes of padding to be added to the data.

MACmodes
For MAC generation and verification operation the following modes are available:

> 0: Standard DESCBC

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 73

Chapter 9: Cipher Object

> 1: Standard DESCBCwith configurable MAC length

In both methods, NULL padding is applied to the data.

Encrypt/Decrypt Parameters
In all modes, except SYM_MODE_ECB, the parameter buffer must contain the IV (8 bytes). In SYM_MODE_
ECB, there are no parameters.

MACParameters
When mode 1 is used, parameter buffer contains 4 bytes, which contain a little-endian encoding of an integer.
The integer value must contain a value from 1 to 8, indicating the number of bytes of the final IV that will be
used as the MAC.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 74

Chapter 9: Cipher Object

Triple DES Cipher Object

Operations Supported
Encrypt, Decrypt, Multi-Part MAC, and Multi-Part Verify.

Key encoding
Every byte contains 7 key bits, and 1 parity bit. The parity bit is the least significant bit in each byte. There is no
additional encoding of the key data. The key must be 16 or 24 bytes.

Encrypt/Decrypt Modes
The least significant nibble (four bits) determines the operational mode. Possible values:

> SYM_MODE_ECB (0)
Electronic Code Book (ECB) mode. It may be combined with a padding mode (see below).

> SYM_MODE_CBC (1)
Cipher Block Chaining (CBC) mode. It may be combined with a padding mode (see below).

> SYM_MODE_CFB (2)
Cipher Feedback (64-bit) mode

> SYM_MODE_BCF (3)
Byte Cipher Feedback (8-bit CFB) mode

> SYM_MODE_OFB (4)
Output Feedback (64-bit) mode

> SYM_MODE_BOF (5)
Byte Output Feedback (8-bit OFB) mode

The most significant nibble determines the padding mode. Possible values:

> SYM_MODE_PADNONE (0x00)
No padding applied. Data must be a multiple of the block size (8 bytes).

> SYM_MODE_PADNULL (0x80)
0 to 7 bytes with value 0 is added to the data to extend it to be a multiple of block size.

> SYM_MODE_PADPKCS1 (0x90)
PKCS#1 padding is applied. This causes 1 to 8 bytes of padding to be added to the data.

MACmodes
For MAC generation and verification, available modes include:

> 0: Standard triple DESCBC
> 1: Standard triple DESCBCwith configurable MAC length

> 2: X9.19 triple DESCBC

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 75

Chapter 9: Cipher Object

> 3: X9.19 triple DESCBCwith configurable MAC length

> 4: Retail CFBMAC.
In all methods, NULL padding is applied to the data.

Encrypt/Decrypt Parameters
In all modes except SYM_MODE_ECB, the parameter buffer must contain the IV (8 bytes). In SYM_MODE_
ECB, there are no parameters.

MACParameters
When mode is either 1 or 3, parameter buffer contains at least 4 bytes, which is the little-endian encoding of an
integer. The integer value must contain a value from 1 to 8, indicating the number of bytes of the final IV that will
be used as the MAC. This is optionally followed by 8 bytes containing the IV. For mode 4 (Retail MACCFB), the
parameter buffer must have 8 bytes containing the encrypted IV. For the remaining two modes, the parameter
buffer is either empty, or has 8 bytes containing the IV.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 76

Chapter 9: Cipher Object

ECDSACipher Object

Operations Supported
SignInit(), Sign(), VerifyInit(), and Verify().

Key Encoding
When performing:

> Sign operation: the key is specified as a buffer of ECC_Curve_t followed by Private Key ECC_PrivateKey_t.
> Verify operation: the key is specified as a buffer of ECC_Curve_t followed by Public Key ECC_PublicKey_t.
See also "ECDSA KeyStructures" below.

Modes
None

Sign/Verify Parameters
None

ECDSAKey Structures
#define ECC_MAX_MOD_LEN 571
#define ECC_MAX_BUF_LEN ROUND_UP(ECC_MAX_MOD_LEN, 8)/8

Identifies a curve over a field with an odd prime number of elements:
typedef enum ECC_FieldType_et {

ECC_FT_GFP,
} ECC_FieldType_t;

Identifies a curve over a field of characteristic two (F_2^m)
typedef enum ECC_FieldType_et {

ECC_FT_G2M
} ECC_FieldType_t;

The X coordinate of the point. X is an element of the field over which the curve is defined:
typedef struct ECC_Point_st {

unsigned char x[ECC_MAX_BUF_LEN];
} ECC_Point_t;

The Y coordinate of the point. Y is an element of the field over which the curve is defined:
typedef struct ECC_Point_st {

unsigned char y[ECC_MAX_BUF_LEN];
} ECC_Point_t;

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 77

Chapter 9: Cipher Object

The field type, over which this curve is defined:
typedef struct ECC_Curve_st {

ECC_FieldType_t fieldType;
} ECC_Curve_t;

The curve modulus. This value is the field polynomial for ECC_FT_G2M field types:
typedef struct ECC_Curve_st {

unsigned char modulus[ECC_MAX_BUF_LEN];
} ECC_Curve_t;

The coefficient 'a' in the elliptic curve equation:
typedef struct ECC_Curve_st {

unsigned char a[ECC_MAX_BUF_LEN];
} ECC_Curve_t;

The coefficient 'b' in the elliptic curve equation:
typedef struct ECC_Curve_st {

unsigned char b[ECC_MAX_BUF_LEN];
} ECC_Curve_t;

The base point:
typedef struct ECC_Curve_st {

ECC_Point_t base;
} ECC_Curve_t;

The base point order:
typedef struct ECC_Curve_st {

unsigned char bpOrder[ECC_MAX_BUF_LEN];
} ECC_Curve_t;

This buffer contains a big endian large number regardless of the field type.

The buffer containing the private key:
typedef struct ECC_PrivateKey_st {

unsigned char d[ECC_MAX_BUF_LEN];
} ECC_PrivateKey_t;

The private key is always a big-endian large number, d, regardless of the field type of the curve.

The point P on the curve, which is calculated from the curve base and the private key:
typedef struct ECC_PublicKey_st {

ECC_Point_t p;
} ECC_PublicKey_t;

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 78

Chapter 9: Cipher Object

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 79

Chapter 9: Cipher Object

IDEA Cipher Object

Operation Supported
Encrypt, Decrypt, Multi-part MAC, Multi-Part MAC Verify

Key Encoding
Supports 16 byte key value.

Encrypt/Decrypt Modes
The least significant nibble (four bits) is used to determine the operational mode.

Possible values:

> SYM_MODE_ECB (0)
Electronic Code Book (ECB) mode. It may be combined with a padding mode (see "PaddingMode " below).

> SYM_MODE_CBC (1)
Cipher Block Chaining (CBC) mode. It may be combined with a padding mode (see "PaddingMode
" below).

PaddingMode
The most significant nibble defines the padding mode used.

Possible value: SYM_MODE_PAD (0x90)
PKCS#1 padding is applied. This causes 1 to 8 bytes of padding to be added to the data.

MACmodes
For MAC generation and verification, available modes include:

> SYM_MODE_MAC_3 (0)
Standard MAC

> SYM_MODE_MAC_GEN (1)
Standard MAC configurable length

Encrypt/Decrypt Parameter
In SYM_MODE_CBC, the parameter buffer must contain the IV (8 bytes). In SYM_MODE_ECB, there are no
parameters.

MACParameters
When mode is SYM_MODE_MAC_GEN, parameter buffer contains at least 4 bytes, which is the little-endian
encoding of an integer. The integer value must contain a value from 1 to 8, indicating the number of bytes to
return.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 80

Chapter 9: Cipher Object

RC2Cipher Object

Operations Supported
Encrypt, Decrypt, Multi-Part MAC, Multi-Part MAC Verify

Key Encoding
128 byte (Max)

Encrypt/Decrypt Modes
The least significant nibble (four bits) is used to determine the operational mode. The following list defines the
possible values:

> SYM_MODE_ECB (0)
Electronic Code Book (ECB) mode. It may be combined with a padding mode (see below).

> SYM_MODE_CBC (1)
Cipher Block Chaining (CBC) mode. It may be combined with a padding mode (see below).

MAC modes
For MAC generation and verification the following modes are available:

> SYM_MODE_MAC_3 (0)
Standard CBC

> SYM_MODE_MAC_GEN (1)
Standard CBCwith configurable MAC length (max 8 bytes).

Encrypt/Decrypt Parameters
In SYM_MODE_CBC, the parameter buffer must contain the IV (8 bytes). In SYM_MODE_ECB, there are no
parameters.

MAC Parameters
When mode is SYM_MODE_MAC_GEN, parameter buffer contains at least 4 bytes, which is the little-endian
encoding of an integer. The integer value must contain a value from 1 to 8, indicating the number of bytes of
the final IV that will be used as the MAC.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 81

Chapter 9: Cipher Object

RC4Cipher Object

Operations Supported
Encrypt/Decrypt

Key Encoding
256 byte (Max)

Encrypt/Decrypt Modes
None

Encrypt/Decrypt Parameters
None

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 82

Chapter 9: Cipher Object

RSACipher Object

Operations Supported
New, Free, GetInfo, EncInit, DecInit, SignInit, VerifyInit, EncryptUpdate, DecryptUpdate, SignRecover,
VerifyRecover and Verify.

To perform an encrypt call:

EncInit + EncryptUpdate

To perform a decrypt call:

DecInit + DecryptUpdate

To generate a signature call:

SignInit + SignRecover

To verify a signature call:

> and view the recovered signature:

VerifyInit + VerifyRecover

> without viewing the signature:

VerifyInit + Verify

Key encoding
The key format depends on whether the operation is expecting a public key or a private key.

Private Keys are used by:

> DecInit

> SignInit

Public Keys are used by:

> EncInit

> VerifyInit

Public Keys are stored in a CtPubRsaKey structure

Private Keys are stored in a CtPriRsaKey structure (see "RSA KeyStructures" on page 85).

RSAModes and Parameters

X509 Mode
#define RSA_MODE_X509 0

X509 Mode is the RAWuncooked mode. No padding or any other transformations are applied by the Cipher
Object.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 83

Chapter 9: Cipher Object

There is no parameter for this mode.

PKCS Mode
#define RSA_MODE_PKCS 1

PKCSMode pads the input data into a specified block format according to the methods described in PKCS #1.
The actual block padding method depends on whether encryption or signing operations are being performed.

For Encryption and Decryption, Block Type 2 is used.

For Signing, Block Type 1 is used.

There is no parameter for this mode.

9796 Mode
#define RSA_MODE_9796 2

ISO 9796 is a signature method only. Encrypt and Decrypt are not supported.

There is no parameter for this mode.

OAEP Mode
#define RSA_MODE_OAEP 3

OAEP is an Encryption/Decryption method only. Signing and Verification operations are not supported.

The padding is performed using the OAEP block format defined in PKCS #1.

This mode requires a parameter which is a structure of type CK_RSA_PKCS_OAEP_PARAMS (see
cryptoki.h).
Restrictions apply to the values of members of the parameter structure:

> hashAlgmust be CKM_SHA_1
> mgfmust be CKG_MGF1_SHA1
> sourcemust be CKZ_DATA_SPECIFIED

Example:
unsigned char data [SZ_DATA];
RSA_PUBLIC_KEY pub;
CipherObj * pRsa;
CK_RSA_PKCS_OAEP_PARAMS param;
param.hashAlg = CKM_SHA_1;
param.mgf = CKG_MGF1_SHA1;
param.source = CKZ_DATA_SPECIFIED;
param.pSourceData = data;
param.sourceDataLen = SZ_DATA;
pRSA->EncInit(pRSA, RSA_MODE_OAEP, &pub, sizeof(pub),
¶m, sizeof(param));

NOTE The data pointed at by pSourceDatamust remain intact while the object is in use.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 84

Chapter 9: Cipher Object

KEY WRAP OAEP Mode
#define RSA_MODE_KW_OAEP 4

KeyWrap OAEP is an Encryption/Decryption method only. Signing and Verification operations are not
supported.

The padding is performed using the OAEP block format defined in PKCS #1 version 2.0

This mode requires a parameter which is a structure of type CK_KEY_WRAP_SET_OAEP_PARAMS (see
cryptoki.h).

RSAKey Structures
#define MAX_RSA_MOD_BYTES (4096/8)
#define MAX_RSA_PRIME_BYTES ((MAX_RSA_MOD_BYTES / 2) + 4)
typedef unsigned char byte;
typedef struct {

byte bits[2]; /* not used */
byte mod [MAX_RSA_MOD_BYTES];
byte exp [MAX_RSA_MOD_BYTES];

}
RSA_PUBLIC_KEY;
struct CtPubRsaKey {
int isPub;/* TRUE */
unsigned int modSz; /* in bytes */
RSA_PUBLIC_KEY key;
};
typedef struct CtPubRsaKey CtPubRsaKey;
typedef struct {

byte bits[2]; /* not used */
byte mod [MAX_RSA_MOD_BYTES];
byte pub [MAX_RSA_MOD_BYTES];
byte pri [MAX_RSA_MOD_BYTES];
byte p [MAX_RSA_PRIME_BYTES];
byte q [MAX_RSA_PRIME_BYTES];
byte e1 [MAX_RSA_PRIME_BYTES];
byte e2 [MAX_RSA_PRIME_BYTES];
byte u [MAX_RSA_PRIME_BYTES];

}
RSA_PRIVATE_KEY_XCRT;
struct CtPriRsaKey {
int isPub;/* FALSE */
int isXcrt;/* TRUE */
unsigned int modSz; /* significant size in bytes */
RSA_PRIVATE_KEY_XCRT key;
};
typedef struct CtPriRsaKey CtPriRsaKey;

NOTE All values stored Big Endian i.e. most significant byte inmod[0] and least significant
byte inmod[MAX_RSA_MOD_BYTES-1].

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 85

CHAPTER 10:
Hash Object

Cryptographic operations require that you obtain a pointer to an instance of a cipher object or a hash object. A
cipher object may be used to encrypt, decrypt, sign (or MAC), or verify data. A hash object is used to perform a
digest operation.

There is a function for obtaining an instance of each of these objects. This chapter provides details on Hash
Objects. See "Cipher Object" on page 45 for information on Cipher Objects.

> "FmCreateHashObject" below

HashObject Functions
The generic Hash Object wraps hashing algorithms into a common interface. In this section, the following Hash
Object functions are specified:

> "Free" on page 92

> "Init" on page 89

> "Update" on page 90

> "Final" on page 91

> "GetInfo" on page 93

> "LoadParam" on page 94

> "UnloadParam" on page 95

FmCreateHashObject

Synopsis
#include “fmciphobj.h”
HashObj * FmCreateHashObject(FMCO_HashObjIndex index);

Description
Returns the address of a hash object for digest operations.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 86

Chapter 10: Hash Object

Parameters

Option Description

index The type of hash object requested. It can have the following values (defined in fmciphobj.h):
> FMCO_IDX_MD2: Implementation of theMD-2 algorithm
> FMCO_IDX_MD5: Implementation of theMD-5 algorithm
> FMCO_IDX_RMD128: Implementation of the RIPEMD-128 algorithm
> FMCO_IDX_RMD160: Implementation of the RIPEMD-160 algorithm
> FMCO_IDX_SHA1: Implementation of the SHA-1 algorithm
> FMCO_IDX_SHA256: Implementation of the SHA256 algorithm
> FMCO_IDX_SHA384: Implementation of the SHA384 algorithm
> FMCO_IDX_SHA512: Implementation of the SHA512 algorithm
This list is correct at time of writing; the actual number of objects supported depends on the HSM firmware
version.

Operations supported
> "Init" on page 89

> "Update" on page 90

> "Final" on page 91

Data Block Size
Any

Return Value
The address of the hash object is returned. If the system doesn’t have enough memory to complete operation,
NULL is returned.

Comments
The returned hash object should be freed by calling its Free() function (See "Free" on page 92).

NOTE It is the Operating System firmware that provides the HashObject – not the FM SDK.
As new versions of OS firmware are developed and released more HashObjects may be
added to the list of supported algorithms. Therefore a firmware upgrade may be required to
obtain a particular Hash Algorithm.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 87

Chapter 10: Hash Object

Example
{
char buf[100];
char hash[100];
int lenOut;
HashObj *o = FmCreateHashObject(FMCO_IDX_SHA1);
If (o == NULL)
Return error;
o->Init(o);
o->Update(o, data, len);
o->Final(o, hash, sizeof(hash), &lenOut);
o->Free(o);
}

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 88

Chapter 10: Hash Object

Init

Synopsis
#include "fmciphobj.h"
int (*Init)(struct HashObj * ctx);

Description
Configures the object to perform a hash operation or resets the current Hash operation.

Parameters

Parameter Description

ctx IN/OUT object to modify

Return Value
See CiphObjStat in cipherr.h

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 89

Chapter 10: Hash Object

Update

Synopsis
#include "fmciphobj.h"
int (*Update)(struct
HashObj * ctx,
const void * buf,
unsigned int length
);

Description
Uses the object to perform a hash operation or to process more data with the algorithm.

The data passed in buf is passed through the hash algorithm

Parameters

Parameter Description

ctx IN/OUT object to modify

buf IN message to hash

length IN length of message

Return Value
See CiphObjStat in cipherr.h

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 90

Chapter 10: Hash Object

Final

Synopsis
#include "fmciphobj.h"
int (*Final)(struct
HashObj * ctx,
unsigned char * hashVal,
unsigned int length,
unsigned int * plength
);

Description
Final uses the object to finish a hash operation.

If hashVal is NULL, no operation is performed, but the length that would be output is returned in plength.

Parameters

Parameter Description

ctx IN/OUT object to modify

hashVal OUT where to place hash or NULL for length prediction

length IN length of message

plength OUT number of bytes (actually or potentially) returned in hashVal

Return Value
See CiphObjStat in cipherr.h

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 91

Chapter 10: Hash Object

Free

Synopsis
#include "fmciphobj.h"
int (*Free)(struct HashObj * ctx);

Description
HashObj destructor

The hash object Free function releases resources used by the object. The object itself will be freed.

Parameters

Parameter Description

ctx pointer to object to destroy

Return Value
See CiphObjStat in cipherr.h

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 92

Chapter 10: Hash Object

GetInfo

Synopsis
#include "fmciphobj.h"
int (*GetInfo)(struct HashObj * ctx, struct HashInfo * hinfo);

Description
HashObjGetInfo will return information about an initialized HashObj. No sensitive information is returned by this
function.

Parameters

Parameter Description

ctx IN object to query

hinfo OUT pointer to where to store the result (see theHashInfo description below)

HashInfo Structure
Allows application to determine characteristics of the digest algorithm.
struct HashInfo {
char name[32];/**< null terminated ascii string e.g. "SHA-1" */
unsigned int blockLength;/**< optimal hash block size */
unsigned int hashLength;/**< size of hash value */
struct HashObj * hobj; /**< version 1 */
};
typedef struct HashInfo HashInfo;

Return Value
See CiphObjStat in cipherr.h

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 93

Chapter 10: Hash Object

LoadParam

Synopsis
#include "fmciphobj.h"
int (*LoadParam)(struct
HashObj * ctx,
const unsigned char * parameters,
unsigned int paramlen
);

Description
HashObjLoadParam directly modifies a Hash Object state.

Loads the internal parameters of the hash object from a byte array. If the internal data contains integers, the
input byte array should contain big endian values for these integers.

See the particular Hash Class implementation description for details on valid parameter types and their values.

See "UnloadParam" on the next page

Parameters

Parameter Description

ctx IN object to query

parameters IN hash class specific information

paramlen IN length (in bytes) of parameters

ctx: IN/OUT object to modify

Return Value
See CiphObjStat in cipherr.h

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 94

Chapter 10: Hash Object

UnloadParam

Synopsis
#include "fmciphobj.h"
int (*UnloadParam)(struct
HashObj * ctx,
unsigned char * parameters,
unsigned int paramlen,
unsigned int * plen
);

Description
HashObjUnloadParam queries a Hash Object state and returns certain information.

Writes the internal parameters of the hash object to a byte array. If the internal data contains integers, the
output byte array will contain big endian values for these integers.

See the particular Hash Class implementation description for details on valid parameter types and their values.

See "LoadParam" on the previous page.

Parameters

Parameter Description

ctx IN object to query

parameters OUT hash class specific information (depends on pType)

paramlen IN length (in bytes) of parameters

plen OUT where to store the number of bytes returned in parameters (may be * NULL)

Return Value
See CiphObjStat in cipherr.h

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 95

CHAPTER 11:
Setting Privilege Level

CT_SetPrivilege allows elevation of privilege level, circumventing built-in security mechanisms on PKCS#11
objects. Elevated privilege level allows override of sensitive attribute and key usage.

Two possible settings are available:

PRIVILEGE_NORMAL=0

PRIVILEGE_OVERRIDE=1

SetPrivilegeLevel

Synopsis
void CK_ENTRY CT_SetPrivilegeLevel(int level);

Description
This function is a SafeNet extension to PKCS#11. It can be used to set the privilege level of the caller to the
specified value, if the caller has access to the function.

The function is available in the software cryptoki library to support FM emulation

The function cannot be called from outside the HSM (only from inside an HSM).

Use the CT_SetPrivilegeLevel function to set elevated privilege for a short time during the processing of a
message. When the privileged access is complete, call the CT_SetPrivilegeLevel function to set the privilege
back to normal.

In the environment of an FM, the privilege is automatically returned to normal when the current message is
complete - when the FM Dispatch function or the currently intercepted Cryptoki function returns.
PRIVILEGE_OVERRIDEmode allows the FM to read Sensitive attributes and perform Cryptographic
Initialization calls that contradict the usage attributes. For example, you can callC_EncryptInit with an object
that hasCKA_ENCRYPT set to FALSE.

Parameters

Parameter Description

level Desired privilege level

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 96

CHAPTER 12:
SMFSReference

SMFS is a Secure Memory File System (as exported to FMs).

It allows FMs to store keys into tamper-protected battery-backed Static RAM (SRAM)

It has the following general specifications:

> Arbitrary depth directory structure supported.

> File names are any character other than '\' or '/'.

> Path separator is '/' (the Windows '\' is not allowed)

> Files are of fixed size and initialized with zeros when created.

> Directories will expand in size as needed to fit more files.

This chapter contains the following sections:

> "Important Constants" below

> "Error Codes" below

> "File Attributes Structure (SmFsAttr)" on the next page

> "Function Descriptions" on the next page

Important Constants
> Max file name length is 16

> Max path length is 100

> Max number of open files is 32

> Max number of file search handles is 16

Error Codes

SMFS_ERR_ERROR 1 A general error has occurred

SMFS_ERR_NOT_INITED 2 The SMFS has not been initialized

SMFS_ERR_MEMORY 3 The SMFS has run out of memory

SMFS_ERR_NAME_TOO_LONG 4 The name given for a file is too long

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 97

Chapter 12: SMFSReference

SMFS_ERR_RESOURCES 5 The SMFS has run out of resources

SMFS_ERR_PARAMETER 6 An invalid parameter was passed to SMFS

SMFS_ERR_ACCESS 7 User does not have request access to file

SMFS_ERR_NOT_FOUND 8 Requested file was not found

SMFS_ERR_BUSY 9 Operation is being attempted on an open file

SMFS_ERR_EXIST 10 A file being created already exists

SMFS_ERR_FILE_TYPE 11 Operation being performed on wrong file type

File Attributes Structure (SmFsAttr)

Synopsis
SmFsAttr {
unsigned int Size;
unsigned int isDir;

};

Description
This structure holds the file or directory attributes

Members
Size: Current file size in bytes or directory size in entries

isDir: Flag specifying if file is a directory

Function Descriptions
This section contains descriptions of the following functions:

> "SmFsCreateDir" on page 100

> "SmFsCloseFile" on page 101

> "SmFsCalcFree" on page 102

> "SmFsCreateFile" on page 103

> "SmFsDeleteFile" on page 104

> "SmFsFindFile" on page 105

> "SmFsFindFileClose" on page 106

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 98

Chapter 12: SMFSReference

> "SmFsFindFileInit" on page 107

> "SmFsGetFileAttr" on page 108

> "SmFsGetOpenFileAttr" on page 109

> "SmFsOpenFile" on page 110

> "SmFsReadFile" on page 111

> "SmFsRenameFile" on page 112

> "SmFsWriteFile " on page 113

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 99

Chapter 12: SMFSReference

SmFsCreateDir

Synopsis
int SmFsCreateDir(const char * name,
unsigned int entries);

Description
Allocates SRAM memory and a directory entry for a directory.

Parameters

Parameter Description

name Pointer to the absolute path of the directory to create

entries Maximum number of entries that may exist in this directory

Return Value
Returns 0 for success or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 100

Chapter 12: SMFSReference

SmFsCloseFile

Synopsis
int SmFsCloseFile(SMFS_HANDLE fh);

Description
Close the file by removing it from the file descriptor table.

Parameters

Parameter Description

fh File handle of file to close.

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 101

Chapter 12: SMFSReference

SmFsCalcFree

Synopsis
unsigned int SmFsCalcFree(void);

Return Value
Returns amount of free memory (in bytes) in the file system.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 102

Chapter 12: SMFSReference

SmFsCreateFile

Synopsis
int SmFsCreateFile(const char * name,
unsigned int len);

Description
Allocates SRAM memory and a directory entry for a file. Once a file has been created, its size can not be
changed.

Parameters

Parameter Description

name Pointer to the absolute path of the file to create

len Size of file to create (in bytes)

Return Value
Returns 0 for success or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 103

Chapter 12: SMFSReference

SmFsDeleteFile

Synopsis
int SmFsDeleteFile(const char * name);

Description
Deletes a file from secure memory by removing the directory entry and zeroing out its data area.

Parameters

Parameter Description

name Pointer to the absolute path of the file to delete

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 104

Chapter 12: SMFSReference

SmFsFindFile

Synopsis
int SmFsFindFile(int sh,

char * name,
unsigned int size

);

Description
Fetch name of next directory entry from file search context

Parameters

Parameter Description

sh Search handle to continue

name Pointer to location to hold found file namematching pattern

pattern Length of name buffer

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 105

Chapter 12: SMFSReference

SmFsFindFileClose

Synopsis
int SmFsFindFileClose(int sh);

Description
Close a file search context.

Parameters

Parameter Description

sh Search handle to close

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 106

Chapter 12: SMFSReference

SmFsFindFileInit

Synopsis
int SmFsFindFileInit(int *sh,

const char * path,
const char * pattern

);

Description
Creates a file iteration context.

Wild cards are:

> ? – match any character
> * - match many characters

Parameters

Parameter Description

sh Pointer to location to hold search handle

path Pointer to the absolute path where to search for file

pattern Pointer to pattern of file name (including wild cards) to search for

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 107

Chapter 12: SMFSReference

SmFsGetFileAttr

Synopsis
int SmFsGetFileAttr(const char * name,
SmFsAttr * a);

Description
Get attributes of an open file. Returns an attributes structure for the unopen file ‘name’.

Parameters

Parameter Description

name Pointer to absolute path

a Pointer to the returned attributes structure

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 108

Chapter 12: SMFSReference

SmFsGetOpenFileAttr

Synopsis
int SmFsGetOpenFileAttr(SMFS_HANDLE fh,
SmFSAttr * a);

Description
Returns an attribute structure for the open file ‘name’.

Parameters

Parameter Description

fh File handle

a Pointer to the returned attributes structure

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 109

Chapter 12: SMFSReference

SmFsOpenFile

Synopsis
int SmFsOpenFile(SMFS_HANDLE * fh,,
const char * name,);

Description
Finds the file and creates an entry for it in the file descriptor table. The table index returned in ‘fh’ and is used by
other file functions.

Parameters

Parameter Description

fh Pointer to the file handle

name Pointer to the absolute path

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 110

Chapter 12: SMFSReference

SmFsReadFile

Synopsis
int SmFsReadFile(SMFS_HANDLE fh,
unsigned int offset,
char *buf,
unsigned int bc);

Description
Reads data from file.

Parameters

Parameter Description

fh Open file handle

offset Zero-based starting point

buf Pointer to the returned result

bc The number of bytes to read from file

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 111

Chapter 12: SMFSReference

SmFsRenameFile

Synopsis
int SmFsRenameFile(const char * oldName,

const char * newName
);

Description
Renames a file.

Parameters

Parameter Description

oldName Pointer to the absolute path of file to rename

newName Pointer of new file name only (no path)

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 112

Chapter 12: SMFSReference

SmFsWriteFile

Synopsis
int SmFsWriteFile(SMFS_HANDLE fh,
unsigned int offset,
char *buf,unsigned int bc);

Description
Write data to file.

Parameters

Parameter Description

fh Open file handle

offset Zero-based starting point

buf Data to be written

bc The number of bytes to write

Return Value
Returns 0 or an error condition.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 113

CHAPTER 13:
FMDEBUG Reference

FMDEBUG provides debug functions to FM writers. Debug information is available via the hsmtrace utility on
the host.

On Linux, these debug messages are also written to /var/log/messages
Historically, debug logging has been via a simulated serial port 0. This is maintained for backwards
compatibility. In SafeNet ProtectToolkit 5 support was added for standard C printf to write to the hsmtrace
log. This is the recommended method.

NOTE These functions and macros are supported under the FM emulation build as well. In
this case the printing is done to stdout instead of the serial port.

Function Descriptions
This section contains the following function descriptions:

> "debug (macro)" on the next page

> "printf/vprintf" on the next page

> "DBG_INIT" on page 116

> "DBG" on page 117

> "DBG_PRINT" on page 118

> "DBG_STR" on page 119

> "DUMP" on page 120

> "DBG_FINAL" on page 121

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 114

Chapter 13: FMDEBUG Reference

debug (macro)

Synopsis
debug(statements)

Description
This macro is used to conditionally include code in the DEBUG build of the FM or FM emulation.

By placing the statements inside the debug macro, the statements will appear only in the DEBUG build and will
not be present in the Release build.

Example
rv = funct();
debug(if (rv) dbg_print(“Error %x from func\r\n”, rv);)
if (rv) return rv;

In this example, the error message will only be displayed if the code is compiled for DEBUG and funct() returns
an error code.

printf/vprintf
In addition to FMDEBUG logging, FM SDK 5.0 introduces support for the C standard printf() and vprintf()
functions. These functions can be called at any time, with or without the debug library, and accept all standard
C99 formating specifiers.

In FMs, these functions do not print to stdout, but instead send log messages to the hsmtrace log. Since
these are formatting messages for a log rather than stdout, there are two differences from the standard C
implementations.

1. Each printf()/vprintf() call prefaces its output with a log header that includes the FM’s ID.
2. Each call to printf()/vprintf() has a new line appended to its output.

Should an FM developer require raw character logging as existed in PPO toolkits, the FMDEBUG and Serial
Port 0 logging APIs may be used.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 115

Chapter 13: FMDEBUG Reference

DBG_INIT

Synopsis
int dbg_init()

Description
Not required. Retained for backwards compatibility with PSG.

This macro is used to initialize the debug library and claim serial port 1 of the PSG. The port is also moded up
for (115200, 8, none, 1) serial mode operations.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 116

Chapter 13: FMDEBUG Reference

DBG

Synopsis
int dbg(buf, len)

Description
This macro is used to send a non-terminated string to serial port 1 of the PSG.

On PSI-E and newer, this API writes to the HSM trace log.

On the SafeNet ProtectServer PCIe HSMs, printf is preferred over use of this API.

Parameters

Parameter Description

buf Array of printable characters to output to the serial port

len Length of buffer to output

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 117

Chapter 13: FMDEBUG Reference

DBG_PRINT

Synopsis
include <fmdebug.h>
int dbg_print(char *format, ...);

Description
This function formats and dumps the given string to serial port 1 of the PSG.

Its use mirrors that of the C function printf.
On PSI-E and newer, this API writes to the HSM trace log.

On SafeNet ProtectServer PCIe HSMs, printf is preferred over use of this API.

Parameters

Parameter Description

format Format of the string to print. This argument is followed by the values to place inside the format string.

Return Value
Returns 0 or -1 for failure.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 118

Chapter 13: FMDEBUG Reference

DBG_STR

Synopsis
include <fmdebug.h>
int dbg_str()

Description
This macro is used to output a null terminated string to serial port 1 of the PSG.

On PSI-E and newer, this API writes to the HSM trace log.

On SafeNet ProtectServer PCIe HSMs, printf is preferred over use of this API.

Parameters

Parameter Description

str String to output to serial port

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 119

Chapter 13: FMDEBUG Reference

DUMP

Synopsis
include <fmdebug.h>
void dump(char *desc, unsigned char *data, short len);

Description
This function converts unprintable character values into hex values and sends them to serial port 1 of the PSG.

On PSI-E and newer, this API writes to the HSM trace log.

Parameters

Parameter Description

desc Pointer to string that holds the description of the dumped buffer. This string is dumped immediately
before the dumped buffer.

data Pointer to buffer to be dumped

len The length of the buffer to be dumped (in bytes)

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 120

Chapter 13: FMDEBUG Reference

DBG_FINAL

Synopsis
include <fmdebug.h>
int dbg_final()

Description
Not required. Retained for backwards compatibility with PSG.

This macro is used to finalize the debug library and release serial port 1 of the PSG.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 121

CHAPTER 14:
Message Dispatch API Reference

The FM SDK has a number of host libraries that must be linked into the host application in order to be able to
communicate with an FM. The following functions labelled by the MD_ prefix form the Message Dispatch (MD)
API. The function prototypes are defined in the header filemd.h. The libraries etpso (for local HSMs) and
etnetclient (for remote HSMs) implement the PCIe bus and NetServer driver respectively. The driver is
accessible via theMD API.
Functions included in this Reference are:

> "MD_Initialize" on the next page

> "MD_Finalize" on page 124

> "MD_GetHsmCount" on page 125

> "MD_GetHsmState" on page 126

> "MD_ResetHsm" on page 128

> "MD_SendReceive" on page 129

> "MD_GetParameter" on page 133

> "FMHost Legacy Functions API " on page 134

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 122

Chapter 14: Message Dispatch API Reference

MD_Initialize
This function is used to initialize the message dispatch library. Until this function is called, all other functions will
return error code MDR_NOT_INITIALIZED.

The message dispatch library is designed to operate on a stable HSM system (either local or remote to the
Host computer). During the initialization of the message dispatch library, the number of accessible HSMs is
determined and HSM indices are allocated to accessible HSMs. These variables are utilized in other functions;
if the HSM system should change, the message dispatch library should be re-initialized.

Synopsis
#include <md.h>
MD_RV MD_Initialize(void)

Input Requirements
None

Input Parameters
None

Output Requirements
The function returns either MDR_OK or MDR_UNSUCCESSFUL.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 123

Chapter 14: Message Dispatch API Reference

MD_Finalize
This function is used to finalize the message dispatch library. After this function returns, only theMD_Initialize
() function should be called. All other functions will return error code MDR_NOT_INITIALIZED.

Synopsis
#include <md.h>
void MD_Finalize(void)

Input Requirements
The message dispatch library has been initialized via theMD_Initialize() function.

Input Parameters
None

Output Requirements
None

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 124

Chapter 14: Message Dispatch API Reference

MD_GetHsmCount
This function retrieves the number of accessible HSMs at the time the message dispatch library was initialized
(when theMD_Initialize() function was called).

Synopsis
#include <md.h>
MD_RV MD_GetHsmCount(uint32* pHsmCount)

Input Requirements
The message dispatch library has been initialized via theMD_Initialize() function.

Input Parameters

Parameter Description

pHsmCount Pointer to the variable which will hold the number of visible HSMs when the function returns. The
pointer must not be NULL.

Output Requirements
The HSM Count is returned in pHsmCount.

The function returns the following codes:

Function Code Qualification

MDR_OK N/A

MDR_INVALID_PARAMETER If pHsmCount was NULL.

MDR_NOT_INITIALIZE If themessage dispatch library was not previously initialized successfully.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 125

Chapter 14: Message Dispatch API Reference

MD_GetHsmState
This function retrieves the current state of the specified HSM.

Synopsis
#include <md.h>
MD_RV MD_GetHsmState(uint32 hsmIndex,

HsmState_t* pState,
uint32* pErrorCode);

Input Requirements
The message dispatch library has been initialized via theMD_Initialize() function.

Input Parameters

Parameter Description

hsmIndex Zero-based index of the HSM to query. For remote HSMs, HSMs are numbered according to the
order that the HSMs IP addresses were entered in the ET_HSM_NETCLIENT_SERVERLIST
registry key. Refer to theSafeNet HSM Access Provider Installation Guide for further details. When
MD_Initialize() is invoked, themessage dispatch library assigns an index to each available HSM.

pState Pointer to a variable to hold the HSM state. The pointer must not be NULL.

pErrorCode Pointer to a variable which will hold the HSM error code when the function returns. If the HSM is
halted, this variable contains an error code indicating the conditions which caused the halt. The
pointer may be NULL.

Output Requirements
pState: When the function returns, pState points to a variable containing one of the following values. These
values are defined in hsmstate.h :

Label Value Meaning

S_WAIT_ON_
TAMPER

1 The HSM is waiting for the tamper cause to be removed.

S_HALT 6 The HSM is halted due to a failure.

S_POST 7 The HSM is initializing, and performing POST (Power On Self Test).

S_TAMPER_
RESPOND

8 The HSM is responding to tamper.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 126

Chapter 14: Message Dispatch API Reference

Label Value Meaning

S_NORMAL_
OPERATION

0x8000 The HSM is in one of the following three states: S_NONFIPS_MODE, S_WAIT_
FOR_INIT, or S_FIPS_MODE.

pErrorCode: When the function returns, pErrorCode points to a variable containing one of the following
values. These values are defined in inc_scfs.h:

Label Value Meaning

SCFS_BAD_SDRAM 0x00000001 The HSM has come out of reset but has crashed whilst checking the
SDRAM.

SCFS_BAD_SRAM 0x00000004 Failure in SecureMemory.

SCFS_BAD_SMFS 0x0000000A Failure in the SecureMemory File System.

SCFS_BAD_CRYPT 0x00000021 Failure whilst testing cryptographic algorithms.

SCFS_BAD_RBG 0x00000023 Failure whilst testing the random number generator.

SCFS_UART_COM 0x00000026 Failure to detect the Real TimeClock.

SCFS_FLASH_FM 0x00000040 Failure in the Flash ROM – section containing the functionality module.

SCFS_FLASH_SA0 0x00000041 Failure in the Flash ROM – section containing the hardware info.

SCFS_TAMP_
ACTIVE

0x00000083 The HSM has been tampered and the tamper is active

The function returns the following codes:

Function Code Qualification

MDR_OK N/A

MDR_UNSUCCESSFUL N/A

MDR_NOT_INITIALIZE If themessage dispatch library was not previously initialized successfully.

MDR_INVALID_HSM_INDEX If HSM index was not in the range of accessible HSMs.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 127

Chapter 14: Message Dispatch API Reference

MD_ResetHsm
This function is used to reset the specified HSM.

Synopsis
#include <md.h>
MD_RV MD_ResetHsm(uint32 hsmIndex);

Input Requirements
The message dispatch library has been initialized via theMD_Initialize() function.
The remote server may disable or limit the use of this function via the ET_HSM_NETSERVER_ALLOW_
RESET environment variable. Refer to the SafeNet HSMAccess Provider Installation Guide for further details.
If this limitation has been set, then this function may only be called when the HSM stat is not S_NORMAL_
OPERATION. See "MD_GetHsmState" on page 126 for further details.

Input Parameters

Parameter Description

hsmIndex Zero-based index of the HSM to query. For remote HSMs, the HSM indices are numbered according to
the order that the HSMs’ IP addresses were entered in the ET_HSM_NETCLIENT_SERVERLIST
registry key. Refer to the HSM Access Provider Install Guide for further details. WhenMD_Initialize ()
is invoked themessage dispatch library assigns an index to each available HSM.

Output Requirements
The HSM is reset.

The function returns the following codes:

Function Code Qualification

MDR_OK N/A

MDR_UNSUCCESSFUL N/A

MDR_NOT_INITIALIZE If themessage dispatch library was not previously initialized successfully.

MDR_INVALID_HSM_INDEX If HSM index was not in the range of accessible HSMs.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 128

Chapter 14: Message Dispatch API Reference

MD_SendReceive
This function is used to send a request and receive the response.

Synopsis
#include <md.h>
MD_RV MD_SendReceive(uint32 hsmIndex,

uint32 originatorId,
uint16 fmNumber,
MD_Buffer_t* pReq,
uint32 timeout,
MD_Buffer_t* pResp,
uint32* pReceivedLen,
uint32* pFmStatus);

Input Requirements
The message dispatch library has been initialized via theMD_Initialize() function.

Input Parameters

Parameter Description

hsmIndex Zero-based index of the HSM to query. For remote HSMs, HSMs are numbered according to the
order that the HSMs' IP addresses were entered in the ET_HSM_NETCLIENT_SERVERLIST
registry key. Refer to theSafeNet HSM Access Provider Installation Guide for further details.
WhenMD_Initialize() is invoked, themessage dispatch library assigns an index to each
available HSM.

fmNumber Identifies whether the request is intended for a Functionality Module(FM) or not. This valuemust
be set to FM_NUMBER_CUSTOM_FM (#include csa8fm.h).

originatorId ID of the request originator. This value is typically 0. The value should only be non-zero when the
calling application is acting as a proxy.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 129

Chapter 14: Message Dispatch API Reference

Parameter Description

pReq Array of request buffers to send to the FMmodule. For user-defined functions, the structure and
content of the array of buffers is user-defined. Refer to "javahsmreset" on page 39 and
"javahsmstate" on page 39 for an example of how to construct the response and request buffers
for a user-defined function in Java.
Each buffer in the array is anMD_Buffer_t struct, which contains a pointer to the data and the
number of bytes of data, as detailed below.
typedef struct
{
uint8*pData;
unit32length;
} MD_Buffer_t;

In the finalMD_Buffer_t struct the pData field must contain a NULL pointer and the length field
should be set to 0. This indicates the end of the array of buffers. This scheme allows arrays with
variable number of buffers to be passed into the function.
The following diagram illustrates an array of buffers containing two buffers. The first buffer
contains 6 bytes of data and the second buffer contains 4 bytes of data. The last array element
contains an array with the pData field set to NULL and the length field set to 0 to indicate the end
of the array.

Figure 5: An example of a request buffers data type for function MD_SendReceive

timeout Themessage timeout in ms. If set to 0, an internal default of 10minutes is used.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 130

Chapter 14: Message Dispatch API Reference

Parameter Description

pResp Response buffers. When the function returns, the response from the FM is contained in these
buffers. Refer to the description of the pReq buffers above for details on how these buffers must
be constructed.
Thememory for the pResp buffers must be allocated in the context of the application which calls
the function. The pData field and length fields must be assigned appropriately to conform to the
anticipated response packet.
The buffers are filled in order until either the entire response is copied or the buffers overflow (this
condition determined by pReceivedLen, described below).
The value of this parameter can be NULL if the FM function will not return a response.

pReceivedLen Address of variable to hold the total number of bytes placed in the response buffers. Thememory
for this variable must be allocated in the context of the application which calls the function. The
value of this parameter can be NULL if the FM function will not return a response.

pFmStatus Address of variable to hold the status/return code of the Functionality Module which processed
the request. Themeaning of the value is defined by the FM. The value of this parameter can be
NULL.

Output Requirements
The request is sent to the appropriate FM module. Where applicable the response is returned in the response
buffers.

The function returns the following codes:

Function Code Qualification

MDR_OK N/A

MDR_
UNSUCCESSFUL

N/A

MDR_INVALID_
PARAMETER

If the pointer supplied for pReq is NULL, if the request requires a response and the pointer
supplied for pResp is NULL or if pReserved is not zero.

MDR_NOT_
INITIALIZE

If themessage dispatch library was not previously initialized successfully.

MDR_INVALID_
HSM_INDEX

If HSM index was not in the range of accessible HSMs.

MDR_
INSUFFICIENT_
RESOURCE

If there is insufficient memory on either the host or adapter

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 131

Chapter 14: Message Dispatch API Reference

Function Code Qualification

MDR_OPERATION_
CANCELLED

The operation was cancelled in the HSM. This code will not be returned.

MDR_INTERNAL_
ERROR

TheHSM has detected an internal error. This code will be returned if there is a fault in the
firmware or device driver.

MDR_ADAPTER_
RESET

The HSMwas reset during the operation. This could be possibly due to theMD_ResetHsm
command being issued during the operation.

MDR_FM_NOT_
AVAILABLE

An invalid FM number was used.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 132

Chapter 14: Message Dispatch API Reference

MD_GetParameter
This function obtains the value of a system parameter.

Synopsis
#include <md.h>
MD_RV MD_GetParameter(MD_Parameter_t parameter,

void*pValue,
unsigned int valueLen);

Input Requirements
The message dispatch library has been initialized via theMD_Initialize() function.

Input Parameters

Parameter Description

parameter The following parameter, defined inmd.h, may be queried:
MDP_MAX_BUFFER_LENGTH
Value: 1
The recommendedmaximum buffer size (in bytes) for messages that can be sent using theMD
library. While messages larger than this buffer sizemay be accepted by the library, exceeding it is not
recommended. Different HSM access providers have different values for this parameter. When this
parameter returns 0 via pValue, there is no limit to the amount of data that can be sent using this
library.

pValue The address of the buffer to hold the parameter value, which has the following buffer requirements:
MDP_MAX_BUFFER_LENGTH, unsigned integer
Size: 4 bytes
Thememory for the buffer must be allocated in the context of the application which calls the function.
The size of the buffer is determined by the parameter that is being obtained.

valueLen The length of the buffer, pValue, in bytes. If the buffer length is not correct, MDR_INVALID_
PARAMETER is returned.

Output Requirements
The function returns the following codes:

Function Code Qualification

MDR_OK N/A

MDR_INVALID_
PARAMETER

If the pointer supplied for pReq is NULL, if the request requires a response and the pointer
supplied for pResp is NULL or if pReserved is not zero.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 133

Chapter 14: Message Dispatch API Reference

FM Host Legacy Functions API
Host legacy functions are no longer supported. If you have an existing host application that uses host legacy
functions, it will continue to work. It is recommended, however, that you do not use any host legacy functions in
new or migrated host applications.

The functions listed in the following table have been superseded as shown.

Legacy Function Superceded by

FM_Initialize MD_Initialize

FM_Finalize MD_Finalize

FM_DispatchRequest MD_SendReceive

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 134

CHAPTER 15:
HSM Functions Reference

A number of libraries are required to use the functionality provided by the SafeNet FM SDK. This chapter
describes the function sets provided by these libraries.

As well as the functions described in this section, the full set of PKCS#11 functions are also available to the FM.
The PKCS#11 functions are described in the Cprov Programmer Manual, and the PKCS#11 standard. The
library libfmcprov.a provides the PKCS#11 functions.
> "HIFACE ReplyManagement Functions" on the next page

> "Functionalitymodule dispatch switcher function" on page 143

> "Serial communication functions" on page 144

> "High Resolution Timer Functions" on page 150

> "Cprov function patching helper function" on page 151

> "Current Application ID functions" on page 152

> "PKCS#11 StateManagement Functions" on page 153

> "FMHeader DefinitionMacro" on page 162

Summary

Subset of ISO C99 standard library
The FM SDK supports a subset of the ISO C 99 standard library, as defined by ISO/IEC 9899:1999. In general,
floating point math, multibyte character, localization and I/O APIs are not supported; printf and vprintf are
exceptions and are redirected to the logging channel.

In addition to the standard library, C99 language features not present in ANSI C (C89/90) can be used.

The following functions are provided by libfmcrt.a:

assert.h
assert

ctype.h
isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit, tolower,
toupper

stdio.h
printf, sprintf, sscanf, vprintf, vsprintf, snprintf, vsnprintf, vsscanf

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 135

Chapter 15: HSM Functions Reference

stdarg.h
va_arg(), va_start(), va_end(), va_copy()

stdlib.h
abs, atoi, atol, atoll, bsearch, calloc, div, free, labs, llabs, ldiv, lldiv, malloc, qsort, rand, realloc, srand, strtol,
strtoll, strtoul, strtoull

string.h
memchr, memcmp, memcpy, memmove, memset, strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat,
strncmp, strncpy, strpbrk, strrchr, strspn, strstr, strerror, strtok

time.h
asctime, clock, ctime, gmtime, localtime, mktime, strftime, time, difftime

Extensions to the Standard CAPI
The FMSSDK also supports the following common, but non-ISO library functions in their GNU form.

NOTE These may not be available in emulation mode. See "Supported C APIs" on page 22.

ctype.h
isascii, toascii

string.h
strdup, strsep

Unsupported Standard CAPIs
The following standard headers and their contained APIs are not supported by the FM SDK:

complex.h, fenv.h, float.h, locale.h, math.h, signal.h, tgmath.h, wchar.h, and wctype.h

HIFACE Reply Management Functions
This section contains the following reply buffer management functions of the service module, provided by
libfmcsa8k.a:
> "SVC_GetReplyBuffer" on the next page

> "SVC_ConvertReqToReply" on the next page

> "SVC_SendReply" on page 141

> "SVC_ResizeReplyBuffer" on page 138

> "SVC_DiscardReplyBuffer" on page 138

> "SVC_GetUserReplyBufLen" on page 141

> "SVC_GetPid" on page 139

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 136

Chapter 15: HSM Functions Reference

> "SVC_GetOid" on page 139

> "SVC_GetRequest" on page 139

> "SVC_GetRequestLength" on page 140

> "SVC_GetReply" on page 140

> "SVC_GetReplyLength" on page 141

SVC_GetReplyBuffer
This function is used to allocate a reply buffer of the specified length, and associate it with the token. The
contents of the allocated reply buffer will be sent back to the host when SVC_SendReply() function is called.

Synopsis
#include <csa8hiface.h>ditto for all SVC functions
void *SVC_GetReplyBuffer(HI_MsgHandle token,

uint32 replyLength);

Input Parameters

Parameter Description

token The token identifying the request.

replyLength The length of the reply buffer requested by the caller.

Output Requirements
If the reply buffer is allocated successfully, a pointer to the allocated reply buffer is returned. Otherwise, NULL
is returned.

SVC_ConvertReqToReply
This function is used to treat the request buffer as the reply buffer for in-place processing of request data. The
returned address of the reply buffer is not necessarily equal to the request buffer address. However, the
contents of the reply buffer will always be the same as the contents of the request buffer.

Synopsis
void *SVC_ConvertReqToReply(HI_MsgHandle token);

Input Parameters

Parameter Description

token The token identifying the request.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 137

Chapter 15: HSM Functions Reference

Output Requirements
If a Reply Buffer is already allocated for the specified token, NULL is returned. Otherwise a pointer to the reply
buffer is returned. The reply buffer will contain the data in the request buffer.

SVC_ResizeReplyBuffer
This function is used to resize the reply buffer associated with the specified token. The returned address need
not be equal to the previous address of the reply buffer. However, the contents of the matching parts of the old
and new reply buffers will always be the same.

Synopsis
void *SVC_ResizeReplyBuffer(HI_MsgHandle token,
uint32 replyLength);

Input Parameters

Parameter Description

token The token identifying the request.

replyLength The new length of the reply buffer requested by the DestinationModule.

Output Requirements
If the buffer is resized successfully, a pointer to the reply buffer is returned. Otherwise NULL is returned. The
old reply buffer is not freed in this case.

SVC_DiscardReplyBuffer
This function is used to discard the current reply buffer. It is usually called when a processing error is detected
after the reply has been allocated.

Synopsis
void SVC_DiscardReplyBuffer(HI_MsgHandle token);

Input Parameters

Parameter Description

token The token identifying the request.

Output Requirements
None.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 138

Chapter 15: HSM Functions Reference

SVC_GetPid
This function retrieves the process identifier (PID) recorded in the request. The PID is the Process ID of the
host application that originated the request.

Synopsis
uint32 SVC_GetPid(HI_MsgHandle token);

Input Parameters

Parameter Description

token The token identifying the request.

Output Requirements
The Process identifier recorded in the request is returned.

SVC_GetOid
This function retrieves the originator identifier (OID) recorded in the request. The OID is set by the host
application using theMD_SendReceive() function. The value is passed in from the host application.

Synopsis
uint32 SVC_GetOid(HI_MsgHandle token);

Input Parameters

Parameter Description

token The token identifying the request.

Output Requirements
The originator identifier recorded in the request is returned.

SVC_GetRequest
This function retrieves the address of request data.

Synopsis
void *SVC_GetRequest(HI_MsgHandle token);

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 139

Chapter 15: HSM Functions Reference

Input Parameters

Parameter Description

token The token identifying the request.

Output Requirements
The request buffer address is returned.

SVC_GetRequestLength
This function retrieves the length of request data in number of bytes.

Synopsis
uint32 SVC_GetRequestLength(HI_MsgHandle token);

Input Parameters

Parameter Description

token The token identifying the request.

Output Requirements
The number of bytes in the request buffer is returned.

SVC_GetReply
This function retrieves the address of current reply buffer.

Synopsis
void *SVC_GetReply(HI_MsgHandle token);

Input Parameters

Parameter Description

token The token identifying the request.

Output Requirements
If there is a reply buffer associated with the token, the reply buffer address is returned. Otherwise, NULL is
returned.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 140

Chapter 15: HSM Functions Reference

SVC_GetReplyLength
This function retrieves the length of reply data in number of bytes.

Synopsis
uint32 SVC_GetReplyLength(HI_MsgHandle token);

Input Parameters

Parameter Description

token The token identifying the request.

Output Requirements
If there is a reply buffer associated with the token, the number of bytes in the reply buffer is returned.
Otherwise, 0 is returned.

SVC_GetUserReplyBufLen
This function retrieves the length of reply buffer the host application has. If the current reply length is larger
than the value returned by this function, part of the reply will be discarded on the way back.

Synopsis
uint32 SVC_GetUserReplyBufLen(HI_MsgHandle token);

Input Parameters

Parameter Description

token The token identifying the request.

Output Requirements
The number of bytes available to place the reply data in the host system is returned.

SVC_SendReply
This function returns the reply to the host. If there is a reply buffer associated with the token, the data recorded
in reply buffer is also returned.

Synopsis
void SVC_SendReply(HI_MsgHandle token,
uint32 applicationStatus);

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 141

Chapter 15: HSM Functions Reference

Input Parameters

Parameter Description

token The token identifying the request.

applicationStatus A status code for the execution of the request, which will be reported to the host
application. The values of this parameter does not affect the reply delivery in any way.

Output Requirements
None.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 142

Chapter 15: HSM Functions Reference

Functionality module dispatch switcher function
This section contains the firmware message dispatch management functions.

FMSW_RegisterDispatch
This function registers a FM API dispatch handler routine to the system. When a request is sent to the FM_
NUMBER_CUSTOM_FM, the registered function is called.

The type FMSW_DispatchFn_t is a pointer to a function with the following declaration:
void DispatchHandler(uint32 token, void *reqBuffer, uint32 reqLength);

The token is an opaque handle value identifying the request. The same token must be passed to SVC_Xxx()
functions.

The pair (reqBuffer, reqLength) defines the concatenated data that has been received on the request. See
"MD_SendReceive" on page 129 function for the details of request dispatching.

This function is used when an FM exports a custom API. It is usually called from the startup() function.

Synopsis
#include <fmsw.h>
FMSW_STATUS FMSW_RegisterDispatch(
FMSW_FmNumber_t fmNumber,
FMSW_DispatchFn_t dispatch);

Input Parameters

Parameter Description

fmNumber The FM identification number

dispatch Pointer on API handler function

Output Requirements
Return Value:

> FMSW_OK - The function was registered successfully.

> FMSW_BAD_POINTER - The function pointer is invalid

> FMSW_INSUFFICIENT_RESOURCES - Not enough memory to complete operation

> FMSW_BAD_FM_NUMBER - The FM number is incorrect.

> FMSW_ALREADY_REGISTERED - A dispatch function was already registered.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 143

Chapter 15: HSM Functions Reference

Serial communication functions
This section contains functions for using the serial ports on the HSM. Note that in emulation mode, the serial
ports on the host system are used.

If you specify serial port 0, the output is redirected to the hsmtrace log.
The following functions are provided by libfmserial.a :
> "SERIAL_GetNumPorts" on page 146

> "SERIAL_Open" on page 149

> "SERIAL_Close " on page 150

> "SERIAL_InitPort" on page 146

> "SERIAL_SendData" below

> "SERIAL_WaitReply" on the next page

> "SERIAL_ReceiveData" on the next page

> "SERIAL_FlushRX" on page 146

> "SERIAL_GetControlLines" on page 147

> "SERIAL_SetControlLines" on page 148

> "SERIAL_SetMode" on page 148

SERIAL_SendData

Synopsis
#include <serial.h> applies to all SERIAL_* functions
int SERIAL_SendData(int port,
unsigned char *buf,
int bufLen,
long timeout);

Description
SERIAL_SendData() function is used to send a character array over a serial port.

Parameters

Parameter Description

port Serial port number (0 based). Specify port 0 to redirect the output to the hsmtrace log.

buf Pointer to an array of bytes to be sent

bufLen Length of the buffer, in bytes

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 144

Chapter 15: HSM Functions Reference

Parameter Description

timeout Milliseconds to wait for a character to be sent. A timeout of -1 will use the default timeout.

NOTE The timeout value refers to the total time taken to send the data. For example, a 2
millisecond timeout for sending 10 characters in 9600 baud setting will always fail – the
timeout must be at least 10milliseconds.

Return Code
0: The characters were sent successfully.

-1: There was an error.

SERIAL_ReceiveData
The SERIAL_ReceiveData() function is used to receive an arbitrary length of characters from the serial port.

Synopsis
int SERIAL_ReceiveData(int port,
unsigned char *buf,
int *len,
int bufLen,
long timeout);

Parameters

Parameter Description

port Serial port number (0 based). Specify port 0 to redirect the output to the hsmtrace log.

buf Pointer to an array of bytes, which will hold the received data.

len Pointer to an integer which will hold the actual number of characters received.

bufLen Both themaximum amount of data, in bytes, of the buffer,and the number of bytes requested from the
serial port.

timeout Milliseconds to wait for a character to appear. A timeout of -1 will use the default timeout

Return Code
0: Requested number of bytes has been received.

-1:Less than the requested number of bytes have been received.

SERIAL_WaitReply
The SERIAL_WaitReply() function waits for a character to appear on the serial port.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 145

Chapter 15: HSM Functions Reference

Synopsis
int SERIAL_WaitReply(int port);

Parameters

Parameter Description

port serial port number (0 based). Specify port 0 to redirect the output to the hsmtrace log.

Return Code
0: There is a character at the serial port.

-1: Timeout occurred, and no data appeared.

SERIAL_FlushRX
This function flushes the receive buffer of the specified serial port.

Synopsis
void SERIAL_FlushRX(int port);

Parameters

Parameter Description

port Serial port number (0 based). Specify port 0 to redirect the output to the hsmtrace log.

SERIAL_GetNumPorts
This function returns the number of serial ports available.

Synopsis
int SERIAL_GetNumPorts(void);

Parameters
None

Return Value
The number of serial ports available.

SERIAL_InitPort
This function initializes the specified serial port to the parameters “9600 8N1” with no handshake.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 146

Chapter 15: HSM Functions Reference

Synopsis
int SERIAL_InitPort(int port);

Parameters

Parameter Description

port Serial port number (0 based). Specify port 0 to redirect the output to the hsmtrace log.

Return Code:
0: The serial port was initialized successfully.

-1: There was an error initializing the port.

SERIAL_GetControlLines
This function reads the current state of the control lines, and writes a bitmap into the address pointed to by 'val'.
Only the input bits (CTS, DSR, DCD, RI) reflect the current status of control lines.

Synopsis
int SERIAL_GetControlLines(int port,
unsigned char *bitmap);

Parameters

Parameter Description

port Serial port number (0 based). Specify port 0 to redirect the output to the hsmtrace log.

bitmap Pointer to a character, which will have the resulting bitmap

Return Code
0: The function succeeded

-1: The function failed. The value in the bitmap is not valid

Comments
#define MCL_DSR 0x01
#define MCL_DTR 0x02
#define MCL_RTS 0x04
#define MCL_CTS 0x08
#define MCL_DCD 0x10
#define MCL_RI 0x20
#define MCL_OP_SET 1
#define MCL_OP_CLEAR 2

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 147

Chapter 15: HSM Functions Reference

SERIAL_SetControlLines
This function is used to modify the control lines (DTR/RTS).

Synopsis
int SERIAL_SetControlLines(int port,
unsigned char bitmap,
int op);

Parameters

Parameter Description

port Serial port number (0 based). Specify port 0 to redirect the output to the hsmtrace log.

bitmap Bitmap of control lines to bemodified. Input control lines are silently ignored.

op One of MCL_OP_SET/MCL_OP_CLEAR to set/clear the control lines specified in the bitmap
parameter

Return Code
0: The function succeeded

-1: The function failed

Comments
The same constants used in SERIAL_GetControlLines() function are also used in this function.

SERIAL_SetMode
Used to set the serial port communication parameters.

Synopsis
int SERIAL_SetMode(int port,
int baud,
int numBits,
SERIAL_Parity parity,
int numStop,
SERIAL_HSMode hs);

Parameters

Parameter Description

port Serial port number (0 based). Specify port 0 to redirect the output to the hsmtrace log.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 148

Chapter 15: HSM Functions Reference

Parameter Description

baud Baud rate.

numBits Number of bits in a character. Should be 7 or 8

parity One of the following:
> SERIAL_PARITY_NONE
> SERIAL_PARITY_ODD
> SERIAL_PARITY_EVEN
> SERIAL_PARITY_ONE
> SERIAL_PARITY_ZERO

numStop Number of stop bits in a character. Should be 1 or 2

hs Handshake type. Should be one of the following:
> SERIAL_HS_NONE
> SERIAL_HS_RTSCTS
> SERIAL_HS_XON_XOFF

NOTE Serial flow control is not implemented in the current HSM firmware. This value should
be set to SERIAL_HS_NONE.

Return Code
0: Mode changed successfully

-1: There was an error

SERIAL_Open
Gets a weak ownership of the port. Subsequent calls to this function with the same parameter will fail unless
SERIAL_Close() is called for the same port.

Synopsis
int SERIAL_Open(int port);

Parameters

Parameter Description

port Serial port number (0 based). Specify port 0 to redirect the output to the hsmtrace log.

Return Code
0: Port opened successfully

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 149

Chapter 15: HSM Functions Reference

others: An error prevented the serial port from opening

Comments
This function in no way guarantees safe sharing of the ports.

Any application can callSERIAL_Close() to get the access to the port, or can use SERIAL functions without
opening the port first.

SERIAL_Close
This function is used to release ownership of the serial port.

Synopsis
void SERIAL_Close(int port);

Parameters

Parameter Description

port Serial port number (0 based). Specify port 0 to redirect the output to the hsmtrace log.

Return Code
N/A

Comments
See "SERIAL_Open" on the previous page

High Resolution Timer Functions
These functions can be used to measure time intervals with very high resolution. The accuracy of the timing is
around 1 microsecond.

These functions both use the structure, THR_TIME. This structure contains two values: seconds (secs) and
nanoseconds (ns). The nanoseconds are always less than 109 (equal to 1 second).

> "THR_BeginTiming" below

> "THR_UpdateTiming" on the next page

THR_BeginTiming
This function can be used to start a high-resolution timing operation. The timing resolution is 20ns, and the
accuracy of the timer is about 1 microsecond.

Synopsis
#include <timing.h>ditto for other timing functions
void THR_BeginTiming(THR_TIME *start);

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 150

Chapter 15: HSM Functions Reference

Parameters

Parameter Description

start Address of the THR_TIME structure, which will keep the information needed tomeasure the timing
interval.

Return Code
N/A

THR_UpdateTiming

Synopsis
void THR_UpdateTiming(const THR_TIME *start,
THR_TIME*elapsed);

Description
This function is used to update the timing operation. Since the start structure is not modified, it can be used
multiple times with the same set of parameters.

Parameters

Parameter Description

start Address of the THR_TIME structure that was passed to the THR_BeginTiming() function. The
contents of the structure will not bemodified.

elapsed Address of the THR_TIME structure, which will contain the elapsed time since THR_BeginTiming()
was called. The contents of this structure will be overwritten.

Return Code
N/A

Cprov function patching helper function
This section contains information about Cprov function patching operations.

The function patching is performed using a structure named CprovFnTable_t (defined in header file
cprovtbl.h). The structure contains the number of functions in the table – which can be used as a structure
version, the addresses of the standard Cprov functions, and SafeNet extended functions.

The functions in the table are named the same as the actual functions;C_Initialize function pointer is named
C_Initialize in the structure. The order and place of the function pointers in the structure are guaranteed to be
preserved indefinitely, even if PKCS #11 functions are extended, or more proprietary functions are added to
the firmware. This contract allows for binary compatibility of FMs in future releases of the HSM firmware.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 151

Chapter 15: HSM Functions Reference

OS_GetCprovFuncTable
This function is used to obtain the address of Cprov function table structure, used by the Cprov Filter
component in the firmware. Changing the addresses of functions in the structure allows custom functions to be
called when a Cprov function is requested from the host side. The Cprov functions called from the FM bypass
the Cprov filter, calling the functions in the firmware directly.

Synopsis
#include <cprovpch.h>
CprovFnTable_t *OS_GetCprovFuncTable(void);

Return Code
The address of the Cprov function table structure. It will never be NULL.

Current Application ID functions
These functions can be used to obtain and manipulate the PID (process ID) and OID (Originator ID - currently
unused) of the calling application.

Normally, SVC_GetPid() and SVC_GetOid() functions are used to obtain these values. However, in patched
PKCS#11 functions, the necessary value of token is not available; the provided functions must be used instead.

> "FM_GetCurrentPid" below

> "FM_GetCurrentOid" below

> "FM_SetCurrentPid" on the next page

> "FM_SetCurrentOid" on the next page

FM_GetCurrentPid
This function returns the PID recorded in the current request originated from the host side. if there is no active
request (e.g. a call from Startup()function), FM_DEFAULT_PID is returned.

Synopsis
#include <fmappid.h>ditto for other FM ID functions
unsigned long FM_GetCurrentPid(void);

Return Code
The PID of the application which originated the request.

FM_GetCurrentOid
This function returns the OID recorded in the current request originated from the host side. if there is no active
request (e.g. a call from Startup()function), FM_DEFAULT_OID is returned.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 152

Chapter 15: HSM Functions Reference

Synopsis
unsigned long FM_GetCurrentOid(void);

Return Code
The OID of the application which originated the request.

FM_SetCurrentPid
This function overrides the PID recorded in the current request originated from the host side. If there is no
active request the function does nothing.

Synopsis
unsigned long FM_SetCurrentPid(unsigned long pid);

Parameters

Parameter Description

pid The new PID to be recorded in the request.

Return Code
N/A

FM_SetCurrentOid
This function overrides the OID recorded in the current request originated from the host side. If there is no
active request the function does nothing.

Synopsis
unsigned long FM_SetCurrentOid(unsigned long oid);

Parameters

Parameter Description

oid The new OID to be recorded in the request.

Return Code
N/A

PKCS#11 StateManagement Functions

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 153

Chapter 15: HSM Functions Reference

The functions listed in this section allow the FM to ask the firmware to associate user data with certain firmware
structures. The firmware guarantees cleanup of the associated buffer when the structure in question is
destroyed.

The freeing of the user data is performed by a callback to a user function. If the data is allocated usingmalloc
(), and it contains no pointers to other allocated structures, the free function is typically the standard free()
function.

> "FM_SetAppUserData" below

> "FM_GetAppUserData" on the next page

> "FM_SetSlotUserData" on the next page

> "FM_SetTokenUserData" on page 157

> "FM_GetTokenUserData" on page 158

> "FM_SetTokenAppUserData" on page 158

> "FM_GetTokenAppUserData" on page 159

> "FM_SetSessionUserData" on page 160

> "FM_GetSessionUserData" on page 161

FM_SetAppUserData
This function can be used to associate user data with the calling application. The data is associated with the
PID of the calling application. The function specified in this call will be called to free the data when the last
application using the library finalizes (e.g. when it callsC_Finalize()).
If the application already has associated user data, it will be freed (by calling the current free function) before
the new data association is created.

Synopsis
#include <objstate.h>
CK_RV FM_SetAppUserData(FmNumber_t fmNo,
CK_VOID_PTR userData,
CK_VOID (*freeUserData)(CK_VOID_PTR));

Parameters

Parameter Description

fmNo The fm number of the caller. It must be FM_NUMBER_CUSTOM_FM in this release of the
software.

userData Address of thememory block that will be associated with the session handle. if it is NULL, the
current associated buffer is freed.

freeUserData Address of a function that will be called to free the userData if the library decides that it should be
freed. it must be non-NULL if userData is not NULL.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 154

Chapter 15: HSM Functions Reference

Return Code
CKR_OK: The operation was successful.

CKR_ARGUMENTS_BAD: freeUserData was NULL, when userData was not NULL, or fmNo was not FM_
NUMBER_CUSTOM_FM.

CKR_CRYPTOKI_NOT_INITIALIZED: Cryptoki is not yet initialized.

FM_GetAppUserData
This function is used to obtain the userData associated with the current application. If there are no associated
buffers, NULL is returned in ppUserData.

Synopsis
#include <objstate.h>
CK_RV FM_SetAppUserData(FmNumber_t fmNo,
CK_VOID_PTR_PTR ppuserData);

Parameters

Parameter Description

fmNo The fm number of the caller. It must be FM_NUMBER_CUSTOM_FM in this release of the
software.

ppuserData Address of a variable (of typeCK_Void_PTR) which will contain the address of the user data if this
function returns CKR_OK. It must be non-NULL.

Return Code
CKR_OK: The operation was successful. The associated user data is placed in the variable specified by
ppUserData.

CKR_ARGUMENTS_BAD: ppUserData was NULL, or fmNo was not FM_NUMBER_CUSTOM_FM.

CKR_CRYPTOKI_NOT_INITIALIZED: Cryptoki is not yet initialized.

FM_SetSlotUserData
This function can be used to associate user data with a slot. The data is associated with the slot identified by
slotId. The function specified in this call will be called to free the data when the last application using the library
finalizes.

If the slot already has associated user data it will be freed, by calling the current free function, before the new
data association is created.

Synopsis
#include <objstate.h>
CK_RV FM_SetSlotUserData(FmNumber_t fmNo,
CK_SLOTID slotId,

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 155

Chapter 15: HSM Functions Reference

CK_VOID_PTR userData
CK_VOID(*freeUserData)(CK_VOID_PTR));

Parameters

Parameter Description

fmNo The fm number of the caller. It must be FM_NUMBER_CUSTOM_FM in this release of the
software.

slotId The slot ID of the slot.

userData Address of thememory block that will be associated with the session handle. If it is NULL, the
current associated buffer is freed.

freeUserData Address of a function that will be called to free the userData, if the library decides that it should be
freed. It must be non-NULL if userData is not NULL.

Return Code
CKR_OK: The operation was successful.

CKR_ARGUMENTS_BAD: freeUserData was NULL, when userData was not NULL, or fmNo was not FM_
NUMBER_CUSTOM_FM.

CKR_CRYPTOKI_NOT_INITIALIZED: Cryptoki is not yet initialized.

FM_GetSlotUserData
This function is used to obtain the userData associated with the specified slot. if there are no associated
buffers, NULL is returned in ppUserData.

Synopsis
#include <objstate.h>
CK_RV FM_GetSlotUserData(FmNumber_t fmNo,
CK_SLOTID slotId,
CK_VOID_PTR userData
CK_VOID_PTR_PTR ppUserData);

Parameters

Parameter Description

fmNo The fm number of the caller. It must be FM_NUMBER_CUSTOM_FM in this release of the
software.

slotId The slot ID indicating the slot to be used.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 156

Chapter 15: HSM Functions Reference

Parameter Description

ppuserData Address of a variable (of typeCK_Void_PTR) which will contain the address of the user data if this
function returns CKR_OK. It must be non-NULL.

Return Code
CKR_OK: The operation was successful. The associated user data is placed in the variable specified by
ppUserData.

CKR_ARGUMENTS_BAD: ppUserData was NULL or fmNo was not FM_NUMBER_CUSTOM_FM.

CKR_SLOT_ID_INVALID: The specified slot ID is invalid.

CKR_CRYPTOKI_NOT_INITIALIZED: Cryptoki is not yet initialized.

FM_SetTokenUserData
This function can be used to associate user data with a token. The data is associated with the token in slotId by
the library. The function specified in this call will be called to free the data when the last application using the
library finalizes, or when the token is removed from that slot.

If the token already has associated user data it will be freed, by calling the current free function, before the new
data association is created.

Synopsis
#include <objstate.h>
CK_RV FM_SetTokenUserData(FmNumber_t fmNo,
CK_SLOTID slotId,
CK_VOID_PTR userData
CK_VOID(*freeUserData)(CK_VOID_PTR));

Parameters

Parameter Description

fmNo The fm number of the caller. It must be FM_NUMBER_CUSTOM_FM in this release of the
software.

slotId The slot ID of the slot containing the token.

userData Address of thememory block that will be associated with the session handle. if it is NULL, the
current associated buffer is freed.

freeUserData Address of a function that will be called to free the userData, if the library decides that it should be
freed. It must be non-NULL if userData is not NULL.

Return Code
CKR_OK: The operation was successful.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 157

Chapter 15: HSM Functions Reference

CKR_ARGUMENTS_BAD: freeUserData was NULL or fmNo was not FM_NUMBER_CUSTOM_FM.

CKR_SLOT_ID_INVALID: The specified slot ID is invalid.

CKR_TOKEN_NOT_PRESENT: The specified slot does not contain a token.

CKR_CRYPTOKI_NOT_INITIALIZED: Cryptoki is not yet initialized.

FM_GetTokenUserData
This function is used to obtain the userData associated with the specified token. If there are no associated
buffers, or if the token is not present, NULL is returned in ppUserData.

Synopsis
#include <objstate.h>
CK_RV FM_GetTokenUserData(FmNumber_t fmNo,
CK_SLOTID slotId,
CK_VOID_PTR_PTR ppUserData);

Parameters

Parameter Description

fmNo The fm number of the caller. It must be FM_NUMBER_CUSTOM_FM in this release of the
software.

slotId The slot ID of the slot containing the token.

ppuserData Address of a variable (of typeCK_VOID_PTR) which will contain the address of the user data if this
function returns CKR_OK. It must be non-NULL.

Return Code
CKR_OK: The operation was successful.

CKR_ARGUMENTS_BAD: ppUserData was NULL or fmNo was not FM_NUMBER_CUSTOM_FM.

CKR_SLOT_ID_INVALID: The specified slot ID is invalid.

CKR_CRYPTOKI_NOT_INITIALIZED: Cryptoki is not yet initialized.

FM_SetTokenAppUserData
This function can be used to associate user data with a token in the context of the calling application. The data
is associated with the token (token, PID) pair. The function specified in this call will be called to free the data
when the last application using the library finalizes, or when the token is removed from that slot.

If the token already has associated user data it will be freed, by calling the current free function, before the new
data association is created.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 158

Chapter 15: HSM Functions Reference

Synopsis
#include <objstate.h>
CK_RV FM_SetTokenAppUserData(FmNumber_t fmNo,
CK_SLOTID slotId,
CK_VOID_PTR userData
CK_VOID(*freeUserData)(CK_VOID_PTR));

Parameters

Parameter Description

fmNo The fm number of the caller. It must be FM_NUMBER_CUSTOM_FM in this release of the
software.

slotId The slot ID of the slot containing the token.

userData Address of thememory block that will be associated with the session handle. if it is NULL, the
current associated buffer is freed.

freeUserData Address of a function that will be called to free the userData, if the library decides that it should be
freed. It must be non-NULL if userData is not NULL.

Return Code
CKR_OK: The operation was successful.

CKR_ARGUMENTS_BAD: freeUserData was NULL or fmNo was not FM_NUMBER_CUSTOM_FM.

CKR_SLOT_ID_INVALID: The specified slot ID is invalid.

CKR_TOKEN_NOT_PRESENT: The specified slot does not contain a token.

CKR_CRYPTOKI_NOT_INITIALIZED: Cryptoki is not yet initialized.

FM_GetTokenAppUserData
This function is used to obtain the userData associated with the specified token in the application context. If
there are no associated buffers, or if the token is not present, NULL is returned in ppUserData.

Synopsis
#include <objstate.h>
CK_RV FM_GetTokenAppUserData(FmNumber_t fmNo,
CK_SLOTID slotId,
CK_VOID_PTR_PTR ppUserData);

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 159

Chapter 15: HSM Functions Reference

Parameters

Parameter Description

fmNo The fm number of the caller. It must be FM_NUMBER_CUSTOM_FM in this release of the
software.

slotId The slot ID of the slot containing the token.

ppuserData Address of a variable (of typeCK_VOID_PTR) which will contain the address of the user data if this
function returns CKR_OK. It must be non-NULL.

Return Code
CKR_OK: The operation was successful.

CKR_ARGUMENTS_BAD: ppUserData was NULL or fmNo was not FM_NUMBER_CUSTOM_FM.

CKR_SLOT_ID_INVALID: The specified slot ID is invalid.

CKR_CRYPTOKI_NOT_INITIALIZED: Cryptoki is not yet initialized.

FM_SetSessionUserData
This function can be used to associate user data with a session handle. The data is associated with the (PID,
hSession) pair by the library. The function specified in this call will be called to free the user data if the session is
closed (via a C_CloseSession() or a C_CloseAllSessions() cal), or the application owning the session
finalizes.

If the session handle already contains user data it will be freed, by calling the current free function, before the
new data association is created.

Synopsis
#include <objstate.h>
CK_RV FM_SetSessionUserData(FmNumber_t fmNo,
CK_SESSION_HANDLE hSession,
CK_VOID_PTR userData,
CK_VOID (*freeUserData)(CK_VOID_PTR));

Parameters

Parameter Description

fmNo The fm number of the caller. It must be FM_NUMBER_CUSTOM_FM in this release of the
software.

hSession A session handle, which was obtained from anC_OpenSession() call. The validity of this
parameter is checked.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 160

Chapter 15: HSM Functions Reference

Parameter Description

userData Address of thememory block that will be associated with the session handle. if it is NULL, the
current associated buffer is freed.

freeUserData Address of a function that will be called to free the userData, if the library decides that it should be
freed. It must be non-NULL if userData is not NULL.

Return Code
CKR_OK: The operation was successful.

CKR_ARGUMENTS_BAD: freeUserData was NULL or fmNo was not FM_NUMBER_CUSTOM_FM.

CKR_SESSION_HANDLE_INVALID: The specified session handle is invalid.

CKR_CRYPTOKI_NOT_INITIALIZED: Cryptoki is not yet initialized.

FM_GetSessionUserData
This function is used to obtain the userData associated with the specified session handle. If there are no
associated buffers, NULL is returned in ppUserData.

Synopsis
#include <objstate.h>
CK_RV FM_GetSessionUserData(FmNumber_t fmNo,
CK_SESSION_HANDLE hSession,
CK_VOID_PTR_PTR ppUserData);

Parameters

Parameter Description

fmNo The fm number of the caller. It must be FM_NUMBER_CUSTOM_FM in this release of the
software.

hSession A session handle, which was obtained from anC_OpenSession() call. The validity of this
parameter is checked.

ppuserData Address of a variable (of typeCK_VOID_PTR) which will contain the address of the user data if this
function returns CKR_OK. It must be non-NULL.

Return Code
CKR_OK: The operation was successful. The associated user data is placed in the variable specified by
ppUserData.

CKR_ARGUMENTS_BAD: ppUserData was NULL or fmNo was not FM_NUMBER_CUSTOM_FM.

CKR_SESSION_HANDLE_INVALID: hSession is not a valid session handle.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 161

Chapter 15: HSM Functions Reference

FMHeader DefinitionMacro
The FM header contains information which is used at runtime and must be present in all FMs.

The use of the DEFINE_FM_HEADERmacro simplifies the definition of FM header structure and also ensures
that the header is placed in the appropriate location in the FM binary image.
#include <mkfmhdr.h>

Usage
DEFINE_FM_HEADER(FM_NUMBER, FM_VERSION, FM_SERIAL_NO, MANUFACTURER_ID, PRODUCT_
ID);

FM_NUMBER: Must be the manifest constant FM_NUMBER_CUSTOM_FM in this software version.

FM_VERSION: A 16 bit integer, of the form 0xmmMM, where mm is the minor number, and MM is the major
number (It is displayed as VMM.mm in ctconf). Example: V1.0f . is encoded as 0x0f01.

SERIAL_NO: An integer representing the serial number of the FM.

MANUFACTURER_ID: A string of at most 32 characters, which contains the manufacturer name. This does not
need to be NULL terminated.

PRODUCT_ID: A string consisting of a maximum of 16 characters, which contains the FM name. This does not
need to be NULL terminated.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 162

APPENDIX A:
Glossary

A
Adapter
The printed circuit board responsible for cryptographic processing in a HSM

AES
Advanced Encryption Standard

API
Application Programming Interface

ASO
Administration Security Officer

Asymmetric Cipher
An encryption algorithm that uses different keys for encryption and decryption. These ciphers are usually also known
as public-key ciphers as one of the keys is generally public and the other is private. RSA and ElGamal are two asym-
metric algorithms

B
Block Cipher
A cipher that processes input in a fixed block size greater than 8 bits. A common block size is 64 bits

Bus
One of the sets of conductors (wires, PCB tracks or connections) in an IC

C
CA
Certification Authority

CAST
Encryption algorithm developed by Carlisle Adams and Stafford Tavares

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 163

Appendix A: Glossary

Certificate
A binding of an identity (individual, group, etc.) to a public key which is generally signed by another identity. A cer-
tificate chain is a list of certificates that indicates a chain of trust, i.e. the second certificate has signed the first, the
third has signed the second and so on

CMOS
Complementary Metal-Oxide Semiconductor. A common data storage component

Cprov
ProtectToolkit C - SafeNet’s PKCS #11 Cryptoki Provider

Cryptoki
Cryptographic Token Interface Standard. (aka PKCS#11)

CSA
Cryptographic Services Adapter

CSPs
Microsoft Cryptographic Service Providers

D
Decryption
The process of recovering the plaintext from the ciphertext

DES
Cryptographic algorithm named as the Data Encryption Standard

Digital Signature
A mechanism that allows a recipient or third party to verify the originator of a document and to ensure that the doc-
ument has not be altered in transit

DLL
Dynamically Linked Library. A library which is linked to application programs when they are loaded or run rather than
as the final phase of compilation

DSA
Digital Signature Algorithm

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 164

Appendix A: Glossary

E
Encryption
The process of converting the plaintext data into the ciphertext so that the content of the data is no longer obvious.
Some algorithms perform this function in such a way that there is no knownmechanism, other than decryption with
the appropriate key, to recover the plaintext. With other algorithms there are known flaws which reduce the difficulty
in recovering the plaintext

F
FIPS
Federal Information Protection Standards

FM
Functionality Module. A segment of custom program code operating inside the CSA800 HSM to provide additional or
changed functionality of the hardware

FMSW
Functionality Module Dispatch Switcher

H
HA
High Availability

HIFACE
Host Interface. It is used to communicate with the host system

HSM
Hardware Security Module

I
IDEA
International Data Encryption Algorithm

IIS
Microsoft Internet Information Services

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 165

Appendix A: Glossary

IP
Internet Protocol

J
JCA
Java Cryptography Architecture

JCE
Java Cryptography Extension

K
Keyset
A keyset is the definition given to an allocatedmemory space on the HSM. It contains the key information for a spe-
cific user

KWRAP
Key Wrapping Key

M
MAC
Message authentication code. A mechanism that allows a recipient of amessage to determine if a message has been
tampered with. Broadly there are two types of MAC algorithms, one is based on symmetric encryption algorithms and
the second is based onMessage Digest algorithms. This second class of MAC algorithms are known as HMAC
algorithms. A DES basedMAC is defined in FIPS PUB 113, see http://www.itl.nist.gov/div897/pubs/fip113.htm. For
information on HMAC algorithms see RFC-2104 at http://www.ietf.org/rfc/rfc2104.txt

Message Digest
A condensed representation of a data stream. A message digest will convert an arbitrary data stream into a fixed size
output. This output will always be the same for the same input stream however the input cannot be reconstructed
from the digest

MSCAPI
Microsoft Cryptographic API

MSDN
Microsoft Developer Network

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 166

Appendix A: Glossary

P
Padding
A mechanism for extending the input data so that it is of the required size for a block cipher. The PKCS documents
contain details on themost common paddingmechanisms of PKCS#1 and PKCS#5

PCI
Peripheral Component Interconnect

PEM
Privacy EnhancedMail

PIN
Personal Identification Number

PKCS
Public Key Cryptographic Standard. A set of standards developed by RSA Laboratories for Public Key Cryptographic
processing

PKCS #11
Cryptographic Token Interface Standard developed by RSA Laboratories

PKI
Public Key Infrastructure

ProtectServer
SafeNet HSM

ProtectToolkit C
SafeNet's implementation of PKCS#11. Protecttoolkit C represents a suite of products including various PKCS#11
runtimes including software only, hardware adapter, and host security module based variants. A Remote client and
server are also available

ProtectToolkit J
SafeNet's implementation of JCE. Runs on top of ProtectToolkit C

R
RC2/RC4
Ciphers designed by RSA Data Security, Inc.

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 167

Appendix A: Glossary

RFC
Request for Comments, proposed specifications for various protocols and algorithms archived by the Internet Engin-
eering Task Force (IETF), see http://www.ietf.org

RNG
Random Number Generator

RSA
Cryptographic algorithm by RonRivest, Adi Shamir and Leonard Adelman

RTC
Real TimeClock

S
SDK
Software Development Kits Other documentationmay refer to the SafeNet Cprov and Protect Toolkit J SDKs. These
SDKs have been renamed ProtectToolkit C and ProtectToolkit J respectively.·The names Cprov and Pro-
tectToolkit C refer to the same device in the context of this or previous manuals.·The names Protect Toolkit J and
ProtectToolkit J refer to the same device in the context of this or previous manuals.

Slot
PKCS#11 slot which is capable of holding a token

SlotPKCS#11
Slot which is capable of holding a token

SO
Security Officer

Symmetric Cipher
An encryption algorithm that uses the same key for encryption and decryption. DES, RC4 and IDEA are all sym-
metric algorithms

T
TC
Trusted Channel

TCP/IP
Transmission Control Protocol / Internet Protocol

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 168

Appendix A: Glossary

Token
PKCS#11 token that provides cryptographic services and access controlled secure key storage

TokenPKCS#11
Token that provides cryptographic services and access controlled secure key storage

U
URI
Universal Resource Identifier

V
VA
Validation Authority

X
X.509
Digital Certificate Standard

X.509 Certificate
Section 3.3.3 of X.509v3 defines a certificate as: "user certificate; public key certificate; certificate: The public keys
of a user, together with some other information, rendered unforgeable by encipherment with the private key of the cer-
tification authority which issued it"

SafeNet ProtectToolkit 5.4 ProgrammingGuide
007-013682-002 Rev. A 08 January 2020 Copyright 2009-2020Gemalto 169

	Preface: About the FM SDK Programming Guide
	Customer Release Notes
	Gemalto Rebranding
	Audience
	Document Conventions
	Notes
	Cautions
	Warnings
	Command Syntax and Typeface Conventions

	Support Contacts

	Chapter 1: Overview
	Features

	Chapter 2: Setup
	Installing the FM SDK
	Environment Variables

	Chapter 3: FM Architecture
	FM Support within the HSM Hardware
	FM Support in Emulation Mode

	Chapter 4: FM Development
	Lifecycle Outline
	Initial Development
	Emulation Build
	Adapter Build
	Production Build
	Key Management
	Contents of the $(FMSDK) Directory
	SDK Installation Tips
	Protecting Data Storage of FM
	Cprov Function Patching
	FM Message Dispatching
	Handling Host Processes
	Memory Alignment Issues
	Memory Endian Issues

	Chapter 5: Setting up an MSYS environment and cross-compiler
	Download MinGW and the toolchain source code
	Build and install the cross-compiler
	Automated cross-compiler build
	Manual cross-compiler build

	Set the MSYS environment to include the FMDIR and CPROVDIR directories

	Chapter 6: FM Samples
	RSAENC
	XORSign
	restrict
	safedebug
	cipherobj
	smfs
	javahsmreset
	javahsmstate
	secfmenc
	Emulation builds and test steps
	Adapters builds and test steps

	Chapter 7: Building sample FMs in emulation mode on Windows
	Copy the samples and emulation source folders
	Set the environment variables
	Compile the binaries

	Chapter 8: Utilities Reference
	CTCERT
	CTCONF
	CTFM
	MKFM

	Chapter 9: Cipher Object
	FmCreateCipherObject
	New
	Free
	GetInfo
	EncInit
	EncryptUpdate
	EncryptFinal
	DecInit
	DecryptUpdate
	DecryptFinal
	SignInit
	SignUpdate
	SignFinal
	SignRecover
	VerifyInit
	VerifyUpdate
	VerifyFinal
	VerifyRecover
	Verify
	LoadParam
	UnloadParam
	Config (Obsolete)
	Status (Obsolete)
	EncodeState (Obsolete)
	DecodeState (Obsolete)
	AES Cipher Object
	DES Cipher Object
	Triple DES Cipher Object
	ECDSA Cipher Object
	IDEA Cipher Object
	RC2 Cipher Object
	RC4 Cipher Object
	RSA Cipher Object

	Chapter 10: Hash Object
	FmCreateHashObject
	Init
	Update
	Final
	Free
	GetInfo
	LoadParam
	UnloadParam

	Chapter 11: Setting Privilege Level
	SetPrivilegeLevel

	Chapter 12: SMFS Reference
	Important Constants
	Error Codes
	File Attributes Structure (SmFsAttr)
	SmFsCreateDir
	SmFsCloseFile
	SmFsCalcFree
	SmFsCreateFile
	SmFsDeleteFile
	SmFsFindFile
	SmFsFindFileClose
	SmFsFindFileInit
	SmFsGetFileAttr
	SmFsGetOpenFileAttr
	SmFsOpenFile
	SmFsReadFile
	SmFsRenameFile
	SmFsWriteFile

	Chapter 13: FMDEBUG Reference
	debug (macro)
	printf/vprintf
	DBG_INIT
	DBG
	DBG_PRINT
	DBG_STR
	DUMP
	DBG_FINAL

	Chapter 14: Message Dispatch API Reference
	MD_Initialize
	MD_Finalize
	MD_GetHsmCount
	MD_GetHsmState
	MD_ResetHsm
	MD_SendReceive
	MD_GetParameter
	FM Host Legacy Functions API

	Chapter 15: HSM Functions Reference
	Summary
	HIFACE Reply Management Functions
	SVC_GetReplyBuffer
	SVC_ConvertReqToReply
	SVC_ResizeReplyBuffer
	SVC_DiscardReplyBuffer
	SVC_GetPid
	SVC_GetOid
	SVC_GetRequest
	SVC_GetRequestLength
	SVC_GetReply
	SVC_GetReplyLength
	SVC_GetUserReplyBufLen
	SVC_SendReply

	Functionality module dispatch switcher function
	FMSW_RegisterDispatch

	Serial communication functions
	SERIAL_SendData
	SERIAL_ReceiveData
	SERIAL_WaitReply
	SERIAL_FlushRX
	SERIAL_GetNumPorts
	SERIAL_InitPort
	SERIAL_GetControlLines
	SERIAL_SetControlLines
	SERIAL_SetMode
	SERIAL_Open
	SERIAL_Close

	High Resolution Timer Functions
	THR_BeginTiming
	THR_UpdateTiming

	Cprov function patching helper function
	OS_GetCprovFuncTable

	Current Application ID functions
	FM_GetCurrentPid
	FM_GetCurrentOid
	FM_SetCurrentPid
	FM_SetCurrentOid

	PKCS#11 State Management Functions
	FM_SetAppUserData
	FM_GetAppUserData
	FM_SetSlotUserData
	FM_GetSlotUserData
	FM_SetTokenUserData
	FM_GetTokenUserData
	FM_SetTokenAppUserData
	FM_GetTokenAppUserData
	FM_SetSessionUserData
	FM_GetSessionUserData

	FM Header Definition Macro

	Appendix A: Glossary

